pan-Aves


Zleva doprava: ara hyacintový (Anodorhynchus hyacinthinus), zdroj: flickr.com (JMJ32); Gigantoraptor a Alectrosaurus, autor Luis V. Rey
Zobrazují se příspěvky se štítkemZuby. Zobrazit všechny příspěvky
Zobrazují se příspěvky se štítkemZuby. Zobrazit všechny příspěvky

Avian Phylogenomics Project

První strana úvodníku v žurnálu Science, shrnujícího výsledky APP. (Zdroj: Zhang et al. 2014: 1308)

    Před několika hodinami byly napříč 8 různými žurnály prakticky současně publikovány výsledky Avian Phylogenomics Project (APP), výzkumného programu, na kterém se v předchozích čtyřech letech podílelo 80 institucí z celého světa. Výsledkem stovek let procesorového času a nákladů v hodnotě milionů dolarů je 45 nových anotovaných jaderných genomů, tj. plný 15-násobek počtu, který byl k dispozici před rokem, a – ačkoli některé genomy se v literatuře objevily už loni – zhruba 7-násobek toho, co jsme měli ještě včera. Celkem vzato jde dost možná o největší pokrok v ptačí genetice od vynálezu PCR.
    Na APP není zajímavý ani tak objem nashromážděných dat jako spíš praktická ukázka, co vše se s těmito daty dá dělat. Na včerejšek načasovaná lavina studií aplikuje získaná data napříč všemi obory biologie. Kromě bezprecedentně robustního odhadu fylogeneze, tvořícího východisko pro všechny další analýzy, APP odhaluje molekulární základy nejzajímavějších fenotypických novinek jak ptáků coby celku (peří, ztráta zubů, unikátní průtokový dýchací systém s rigidními plícemi), tak i jejich podskupin (tučňáčí adaptace na chlad, vokální učení psittakopasseranů). Genomová evoluce je analyzována na mnoha různých úrovních (od relativního zastoupení GC a poměru synonymních a non-synonymních substitucí přes karyotypovou evoluci až po paleoviry a vznik pohlavních chromozomů) a řada studií vykazuje přesahy do ekologie, diverzifikační dynamiky a ekologie.
    Avian Phylogenomics Project je vnímán jen jako začátek daleko rozsáhlejšího programu, jehož cílem je osekvenovat 10 000 ptačích genomů. Toho by mělo být dosaženo někdy po roce 2020.

Přehled studií (zahrnuje i několik neptačích prací a prací, které byly publikovány již dříve):


Science:

Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C, Storz JF, Antunes A, Greenwold MJ, Meredith RW, Ödeen A, Cui J, Zhou Q, Xu L, Pan H, Wang Z, Jin L, Zhang P, Hu H, Yang W, Hu J, Xiao J, Yang Z, Liu Y, Xie Q, Yu H, Lian J, Wen P, Zhang F, Li H, Zeng Y, Xiong Z, Liu S, Zhou L, Huang Z, An N, Wang J, Zheng Q, Xiong Y, Wang G, Wang B, Wang J, Fan Y, da Fonseca RR, Alfaro-Núñez A, Campos P, Schubert M, Orlando L, Mourier T, Howard J, Ganapathy G, Pfenning A, Whitney O, Rivas MV, Hara E, Smith J, Farre M, Narayan J, Slavov G, Romanov MN, Borges R, Machado JP, Khan I, Springer MS, Gatesy J, Hoffmann FG, Opazo JC, Håstad O, Sawyer RH, Kim H, Kim K, Kim HJ, Cho S, Li N, Huang Y, Bruford MW, Zhan X, Dixon A, Bertelsen MF, Derryberry E, Warren W, Wilson RK, Li S, Ray DA, Green RE, O'Brien SJ, Griffin D, Johnson WE, Haussler D, Ryder OA, Willerslev E, Graves GR, Alström P, Fjeldså J, Mindell DP, Edwards SV, Braun EL, Rahbek C, Burt DW, Houde P, Zhang Y, Yang H, Wang J, Jarvis ED, Gilbert MTP, Wang J 2014 Comparative genomics across modern bird species reveals insights into avian genome evolution and adaptation. Science 346(6215): 1311–20

Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.

Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SYW, Faircloth BC, Nabholz B, Howard JT, Suh A, Weber CC, Fonseca RRd, Li J, Zhang F, Li H, Zhou L, Narula N, Liu L, Ganapathy G, Boussau B, Bayzid MdS, Zavidovych V, Subramanian S, Gabaldón T, Capella-Gutiérrez S, Huerta-Cepas J, Rekepalli B, Munch K, Schierup M, Lindow B, Warren WC, Ray D, Green RE, Bruford M, Zhan X, Dixon A, Li S, Li N, Huang Y, Derryberry EP, Bertelsen MF, Sheldon FH, Brumfield RT, Mello CV, Lovell PV, Wirthlin M, Schneider MPC, Prosdocimi F, Samaniego JA, Velazquez AMV, Alfaro-Núñez A, Campos PF, Petersen B, Sicheritz-Ponten T, Pas A, Bailey T, Scofield P, Bunce M, Lambert DM, Zhou Q, Perelman R, Driskell AC, Shapiro B, Xiong Z, Zeng Y, Liu S, Li Z, Liu B, Wu K, Xiao J, Yinqi X, Zheng Q, Zhang Y, Yang H, Wang J, Smeds L, Rheindt FE, Braun M, Fjeldså J, Orlando L, Barker K, Jønsson KA, Johnson W, Koepfli KP, O'Brien S, Haussler D, Ryder OA, Rahbek C, Willerslev E, Graves GR, Glenn TC, McCormack J, Burt D, Ellegren H, Alström P, Edwards SW, Stamatakis A, Mindell DP, Cracraft J, Braun EL, Warnow T, Jun W, Gilbert MTP, Zhang G 2014 Whole genome analyses resolve the early branches in the tree of life of modern birds. Science 346(6215): 1320–31

To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.

Nejlepší dostupný odhad ptačí fylogeneze, založený na věrohodnostní analýze 41,8 megabází jaderné DNA (dataset DNA) od 48 ptačích druhů v programu ExaML a následné bayesovské dataci s 39 fosilními kalibracemi v programu MCMCtree. Barvy větví slouží k rozlišení jednotlivých skupin (viz popisky po pravé straně stromu; "Aequornithia" = Aequornithes; "Caprimulgimorphae" = Strisores; "Phoenicopterimorphae" = Mirandornithes); barvy názvů jednotlivých druhů potom zachycují výskyt některých významných znaků: ptáci schopní vokálního učení jsou vyznačeni zeleně, dravci červeně a vodní ptáci modře.
Bootstrapová podpora je rovna 100% pro všechny uzly mimo těch, u kterých je vyznačena. Je vidět, že ne zcela jistými i v celogenomové analýze zůstávají: (1) sesterský vztah dropů a turak; (2) sesterský vztah Otidimorphae (kukačky, turaka, dropi) a Strisores ("lelci" včetně svišťounů); (3) monofylie Cursorimorphae (dlouhokřídlí plus jádro krátkokřídlých), která ale obdržela 100% podporu v některých jiných analýzách; (4) sesterský vztah Cursorimorphae a hoacina; (5) sesterský vztah Phaethontimorphae (kagu, slunatec, faetoni) a Aequornithes (potáplice, trubkonosí, tučňáci, pelikáni, čápi, kormoráni, volavky, ibisové), který ale obdržel 100% v jiných analýzách; (7) sesterský vztah sov a Coraciimorphae (myšáci, kurol, trogoni, "srostloprstí" včetně šplhavců); (8) monofylie Eucavitaves (trogoni, "srostloprstí" včetně šplhavců). Obrovským úspěchem je ale fakt, že nejvyšší možnou podporu obdržela první divergence v rámci Neoaves, nacházející se mezi klady Columbea (potápky, plameňáci, holubi, stepokuři, mesiti) na jedné straně a Passerea (všichni ostatní neoaviani) na straně druhé. Z výskytu jednotlivých ekologií napříč stromem je patrné, že nelze jednoznačně určit, zda byl poslední společný předek Neoaves pozemním nebo vodním ptákem. Šipka na časové ose v dolní části obrázku vyznačuje K/Pg rozhraní (66 Ma); období křídy je vyznačeno šedě. Je patrné, že analýza Jarvise a spol. do křídy klade jen několik málo bazálních divergencí, což je v rozporu s řadou předchozích molekulárních studií – otázkou je, do jaké míry za tímto výsledkem stojí relativně malý počet taxonů. Přerušovaná šedá čára reprezentuje časový horizont 50 Ma (raný eocén), na kterém už existovaly téměř všechny moderní ptačí "řády". Šedé proužky na jednotlivých uzlech vyznačují 95% intervaly kredibility pro příslušné datum divergence.
Ptačí druhy, odshora dolů: zebřička pestrá (Taeniopygia guttata), pěnkavka prostřední (Geospiza fortis), vrána americká (Corvus brachyrhynchos), pipulka zlatokrká (Manacus vitellinus), pokřovník zelený (Acanthisitta chloris), andulka vlnkovaná (Melopsittacus undulatus), nestor kea (Nestor notabilis), sokol stěhovavý (Falco peregrinus), seriema rudozobá (Cariama cristata), vlha núbijská (Merops nubicus), strakapoud osikový (Picoides pubescens), dvojzoborožec nosorožčí (Buceros rhinoceros), trogon horský (Apaloderma vittatum), kurol madagaskarský (Leptosomus discolor), myšák hnědokřídlý (Colius striatus), sova pálená (Tyto alba), orel bělohlavý (Haliaeetus leucocephalus), orel mořský (Haliaeetus albicilla), kondor krocanovitý (Cathartes aura), pelikán kadeřavý (Pelecanus crispus), volavka stříbřitá (Egretta garzetta), ibis čínský (Nipponia nippon), kormorán velký (Phalacrocorax carbo), buřňák lední (Fulmarus glacialis), tučňák kroužkový (Pygoscelia adeliae), tučňák císařský (Aptenodytes forsteri), potáplice malá (Gavia stellata), faeton žlutozobý (Phaethon lepturus), slunatec nádherný (Eurypyga helias), kulík zrzoocasý (Charadrius vociferus), jeřáb královský (Balearica regulorum), hoacin chocholatý (Opisthocomus hoazin), kalypta růžovohlavá (Calypte anna), rorýs ostnitý (Chaetura pelagica), lelek karolinský (Antrostomus carolinensis), drop hřívnatý (Chlamydotis macqueenii), turako červenokorunkatý (Tauraco erythrolophus), kukačka obecná (Cuculus canorus), mesit hnědý (Mesitornis unicolor), stepokur žlutohrdlý (Pterocles gutturalis), holub skalní (Columba livia), plameňák karibský (Phoenicopterus ruber), potápka roháč (Podiceps cristatus), kur domácí (Gallus gallus), krocan domácí (Meleagris gallopavo), kachna divoká (Anas platyrhynchos), tinama tečkovaná (Tinamus guttatus), pštros dvouprstý (Struthio camelus).
(Zdroj: Jarvis et al. 2014: Supplementary Materials: Figure S1)


Background:

The origin of birds is one of the most enduring and dramatic evolutionary debates. The hypothesis that the primarily small-sized birds are nested within a theropod dinosaur group that includes the gigantic Tyrannosaurus rex has been supported by strong fossil evidence, but until recently, several important issues remained unresolved, including the origins of feathers and flight, the “temporal paradox” (the coelurosaurian theropods occur too late in the fossil record to be ancestral to the Jurassic bird Archaeopteryx), and supposed homological incongruities (e.g., the suggested homologies of three fingers in tetanuran theropods are different from those of living birds). Recent discoveries of spectacular dinosaur fossils from China and elsewhere provide new information to address these issues.

Advances:

The discoveries of feathered dinosaur fossils from the Jurassic and Cretaceous sediments of China and elsewhere document a diverse range of feathers from monofilamentous feathers to highly complex flight feathers, which show a general evolutionary trend of increasing complexity leading to the cladogenesis of birds. The wide occurrence of foot feathers in Mesozoic theropods (i.e., short filamentous forms in relatively basal theropods and large vaned forms in derived theropods, including early birds) clarifies feather-scale relations and integumentary evolution pertinent to flight origins and also shows that bird flight likely evolved through a four-winged stage. With numerous discoveries of well-preserved dinosaur fossils over a wide range of geological periods, the morphological, functional, and temporal transition from ground-living to flight-capable theropod dinosaurs is now one of the best-documented major evolutionary transitions. Meanwhile, studies in disciplines other than paleontology provide new insights into how bird characteristics originated and evolved—such as feathers, flight, endothermic physiology, unique strategies for reproduction and growth, and an unusual pulmonary system. The iconic features of extant birds, for the most part, evolved in a gradual and stepwise fashion throughout theropod evolution. However, new data highlight occasional bursts of morphological novelty at certain stages close to the origin of birds and an unavoidable complex, mosaic evolutionary distribution of major bird characteristics on the theropod tree. Research into bird origins provides a model of how an integration of paleontological and neontological data can be used to gain a comprehensive understanding of the complexity surrounding major evolutionary transitions and to set new research directions.

Outlook:

 A refined, more robust phylogeny will be imperative to move our studies forward. A larger data set will help to increase the accuracy of phylogenetic reconstructions, but better character formulation and more accurate scorings are imperative at the current stage. In terms of character evolution, an integrative approach combining paleontological, neontological, developmental, temporal, and even paleoenvironmental data is particularly desirable. Greater examination of fossils pertaining to molecular information is also a potentially fruitful avenue for future investigation. Evolutionary scenarios for various aspects of the origin of birds have sometimes been constructed from neontological data, but any historical reconstruction must ultimately be tested using the fossil record. Consequently, dense fossil sampling along the line to modern birds and better understanding of transitional forms play key roles in such reconstructions.

Nejlepší shrnutí evoluce ptáků v jediném obrázku všech dob. Vybrané druhy archosauromorfů jsou zakresleny na časově kalibrované konsenzuální fylogenezi, jejíž topologie pro bazální teropody vychází z Rauhut et al. (2012) a topologie pro celurosaury z Turner et al. (2012). Výčty znaků u jednotlivých uzlů ukazují, v kterém místě ptačí kmenové linie (stem lineage) vznikly podle současných paleontologických poznatků klíčové evoluční novinky odlišující moderní ptáky od ostatních žijících zvířat. Stáří zobrazených taxonů ukazuje, že tzv. "temporal paradox", kterým v minulosti argumentovali odpůrci dinosauřího původu ptáků, neexistuje: známe řadu celurosaurů starších než Archaeopteryx (včetně zástupců ptačí sesterské skupiny) a stratigrafický výskyt obecně velmi dobře koresponduje s fylogenetickou pozicí (bazálnější taxony jsou starší než ty odvozené). Kosterní siluety po pravé straně ilustrují změny v celkové morfologii na vývojové linii vedoucí k ptákům. Odspoda nahoru: raný archosauriform Euparkeria, raný krokodylomorf Sphenosuchus, raný teropod Coelophysis, raný celurosaur (snad bazální tyrannosauroid) Proceratosaurus, raní paraviani Anchiornis (snad bazální avialan nebo troodontid) a Archaeopteryx (snad bazální avialan nebo bazální deinonychosaur), raný krátkoocasý pták Sapeornis, raný ornituromorf Yanornis, moderní pták Columba (holub).
Zkratky (od spodních uzlů k horním): (UB) průtoková dýchací soustava, (BMR) bazální metabolický výdej, (GR) rychlost růstu, (FF) vláknité peří, (SP) pneumatizace kostí, (BL) pohyb po dvou nohou, (CASPE) krční vzdušné vaky rozšířené směrem dozadu, (TFH) tříprstá ruka, (LFC) schopnost složit přední končetinu přitažením záprstí k předloktí, (KBL) pohyb založený na ohýbání kolene místo kyčle, (CCIASE) diferenciace klíčkového vzdušného vaku a břišních vzdušných vaků, (ES) velikost vajec, (VF) obrysová pera, (CE) zvětšení mozku v poměru k tělu, (AFC) schopnost mávavého pohybu předními končetinami, (PPO) obrácení stydké kosti dozadu, (SBT) krátký kostěný ocas, (ACVP) pokročilá kostosternální pumpa – plicní ventilace zajišťována rozpínáním a stlačováním hrudi pomocí svalů upínajících se na hrudní kost a žebra, (SAE) lehce asymetrická vejce, (MO) monoautochronní ovulace – v každém ovulačním cyklu uvolněno z obou vaječníků synchronizovaně právě jedno vajíčko, (IL) vejce snášená v denních nebo několikadenních intervalech, (PC) samčí péče o mláďata, (AL) pohyb vzduchem, (EM) extrémní miniaturizace, (AET) prodloužení a zesílení přední končetiny, (VABRE) rozvoj částí mozků spojených se zrakem, (IA) zvýšená asymetrie, (US) povrch skořápky bez ornamentace, (LP) nízká porozita, (TL) třetí (vnější) vrstva, (ICI) sezení na vejcích, (FPB) srůst pánevních kostí, (RLP) tyčkovitý pygostyl, (AOO) aktivní vaječník a vejcovod, (KS) kinetická lebka, (PSP) radlicovitý pygostyl, (RMILTAY) rychlé dosažení dospělosti v prvním roce života, (ECFSC) snůška vajec nepřikrytá sedimentem, (ER) otáčení vajec
Znaky související s evolucí vzdušných vaků (CASPE, CCIASE, ACVP) se zdají být založeny na kontroverzní studii Serena a spol. (2008); viz proto kritické poznámky Matta Wedela. Nejisté jsou i fylogenetické vztahy na bázi Paraves – více v tomto článku.
(Zdroj: Xu et al. 2014: Figure 2)

Mirarab S, Bayzid MdS, Boussau B, Warnow T 2014 Statistical binning enables an accurate coalescent-based estimation of the avian tree. Science 346(6215): 1337 (Summary) + 1250463
http://www.sciencemag.org/content/346/6215/1250463.abstract

Introduction:

Reconstructing species trees for rapid radiations, as in the early diversification of birds, is complicated by biological processes such as incomplete lineage sorting (ILS) that can cause different parts of the genome to have different evolutionary histories. Statistical methods, based on the multispecies coalescent model and that combine gene trees, can be highly accurate even in the presence of massive ILS; however, these methods can produce species trees that are topologically far from the species tree when estimated gene trees have error. We have developed a statistical binning technique to address gene tree estimation error and have explored its use in genomescale species tree estimation with MP-EST, a popular coalescent-based species tree estimation method.

Rationale:

In statistical binning, phylogenetic trees on different genes are estimated and then placed into bins, so that the differences between trees in the same bin can be explained by estimation error (see the figure). A new tree is then estimated for each bin by applying maximum likelihood to a concatenated alignment of the multiple sequence alignments of its genes, and a species tree is estimated using a coalescent-based species tree method from these supergene trees.

Results:

Under realistic conditions in our simulation study, statistical binning reduced the topological error of species trees estimated using MP-EST and enabled a coalescent-based analysis that was more accurate than concatenation even when gene tree estimation error was relatively high. Statistical binning also reduced the error in gene tree topology and species tree branch length estimation, especially when the phylogenetic signal in gene sequence alignments was low. Species trees estimated using MP-EST with statistical binning on four biological data sets showed increased concordance with the biological literature. When MP-EST was used to analyze 14,446 gene trees in the avian phylogenomics project, it produced a species tree that was discordant with the concatenation analysis and conflicted with prior literature. However, the statistical binning analysis produced a tree that was highly congruent with the concatenation analysis and was consistent with the prior scientific literature.

Conclusions:

Statistical binning reduces the error in species tree topology and branch length estimation because it reduces gene tree estimation error. These improvements are greatest when gene trees have reduced bootstrap support, which was the case for the avian phylogenomics project. Because using unbinned gene trees can result in overestimation of ILS, statistical binning may be helpful in providing more accurate estimations of ILS levels in biological data sets. Thus, statistical binning enables highly accurate species tree estimations, even on genome-scale data sets. 


Introduction:

The absence of teeth or edentulism has evolved on multiple occasions within vertebrates, including birds, turtles, and a few groups of mammals (anteaters, baleen whales, and pangolins). There are also mammals with enamelless teeth (aardvarks, sloths, and armadillos). All toothless/enamelless vertebrates are descended from ancestors with enamelcapped teeth. In the case of birds, it is theropod dinosaurs. Instead of teeth, modern birds use a horny beak (rhamphotheca) and part of their digestive tract (muscular gizzard) to grind up and process food. The fossil record of early birds is fragmentary, and it is unclear whether tooth loss evolved in the common ancestor of all modern birds or convergently in two or more independent lineages.

Rationale:

Tooth formation in vertebrates is a complicated process that involves many different genes. Of these genes, six are essential for the proper formation of dentin (DSPP) and enamel (AMTN, AMBN, ENAM, AMELX, and MMP20). We examined these six genes in the genomes of 48 bird species, which represent nearly all living bird orders, as well as the American alligator, a representative of Crocodylia (the closest living relatives of birds), for the presence of inactivating mutations that are shared by all 48 birds. The presence of such shared mutations in dentin and enamel-related genes would suggest a single loss of mineralized teeth in the common ancestor of all living birds. We also queried the genomes of additional toothless/enamelless vertebrates, including three turtles and four mammals, for inactivating mutations in these genes. For comparison, we looked at the genomes of mammalian taxa with enamel-capped teeth.

Results:

All edentulous vertebrate genomes that were examined are characterized by inactivating mutations in DSPP, AMBN, AMELX, AMTN, ENAM, and MMP20, rendering these genes nonfunctional. The dentin-related gene DSPP is functional in vertebrates with enamelless teeth (sloth, aardvark, and armadillo). All six genes are functional in the American alligator and mammalian taxa with enamelcapped teeth. More important, 48 bird species share inactivating mutations in both dentin-related (DSPP) and enamel-related genes (ENAM, AMELX, AMTN, and MMP20), indicating that the genetic machinery necessary for tooth formation was lost in the common ancestor of all modern birds. Furthermore, the frameshift mutation rate in birds suggests that the outer enamel covering of teeth was lost about 116 million years ago.

Conclusions:

We postulate, on the basis of fossil and molecular evidence, a two-step scenario whereby tooth loss and beak development evolved together in the common ancestor of all modern birds. In the first stage, tooth loss and partial beak development commenced on the anterior portion of both the upper and lower jaws. The second stage involved concurrent progression of tooth loss and beak development from the anterior portion of both jaws to the back of the rostrum. We propose that this progression ultimately resulted in a complete horny beak that effectively replaced the teeth and may have contributed to the diversification of living birds.


Introduction:

Crocodilians and birds are the two extant clades of archosaurs, a group that includes the extinct dinosaurs and pterosaurs. Fossils suggest that living crocodilians (alligators, crocodiles, and gharials) have a most recent common ancestor 80 to 100 million years ago. Extant crocodilians are notable for their distinct morphology, limited intraspecific variation, and slow karyotype evolution. Despite their unique biology and phylogenetic position, little is known about genome evolution within crocodilians.

Rationale:

Genome sequences for the American alligator, saltwater crocodile, and Indian gharial—representatives of all three extant crocodilian families—were obtained to facilitate better understanding of the unique biology of this group and provide a context for studying avian genome evolution. Sequence data from these three crocodilians and birds also allow reconstruction of the ancestral archosaurian genome.

Results:

We sequenced shotgun genomic libraries from each species and used a variety of assembly strategies to obtain draft genomes for these three crocodilians. The assembled scaffold N50 was highest for the alligator (508 kilobases). Using a panel of reptile genome sequences, we generated phylogenies that confirm the sister relationship between crocodiles and gharials, the relationship with birds as members of extant Archosauria, and the outgroup status of turtles relative to birds and crocodilians. We also estimated evolutionary rates along branches of the tetrapod phylogeny using two approaches: ultraconserved element–anchored sequences and fourfold degenerate sites within stringently filtered orthologous gene alignments. Both analyses indicate that the rates of base substitution along the crocodilian and turtle lineages are extremely low. Supporting observations were made for transposable element content and for gene family evolution. Analysis of whole-genome alignments across a panel of reptiles and mammals showed that the rate of accumulation of microinsertions and microdeletions is proportionally lower in crocodilians, consistent with a single underlying cause of a reduced rate of evolutionary change rather than intrinsic differences in base-repair machinery. We hypothesize that this single cause may be a consistently longer generation time over the evolutionary history of Crocodylia. Low heterozygosity was observed in each genome, consistent with previous analyses, including the Chinese alligator. Pairwise sequential Markov chain analysis of regional heterozygosity indicates that during glacial cycles of the Pleistocene, each species suffered reductions in effective population size. The reduction was especially strong for the American alligator, whose current range extends farthest into regions of temperate climates.

Conclusion:

We used crocodilian, avian, and outgroup genomes to reconstruct 584 megabases of the archosaurian common ancestor genome and the genomes of key ancestral nodes. The estimated accuracy of the archosaurian genome reconstruction is 91% and is higher for conserved regions such as genes. The reconstructed genome can be improved by adding more crocodilian and avian genome assemblies and may provide a unique window to the genomes of extinct organisms such as dinosaurs and pterosaurs. 


Introduction:

Brain activity drives both behavior and regulated gene expression in neurons. Although past studies have identified activity-induced signaling and gene regulation cascades in cultured neurons, much less is known about how activity-dependent transcriptional networks are affected by the variations in cell-type composition, network interconnections, and firing patterns that comprise behaviorally active brain circuits in vivo.

Rationale:

We tested the hypothesis that behaviorally regulated gene expression is anatomically and temporally diverse and that the key determinants of this diversity are networks of transcription factors, their genomic binding sites, and epigenetic chromatin states. We analyzed genome-wide, singingregulated gene expression across time in the four major forebrain regions of the song control system in songbirds, a model of speech production in humans. We then performed a transcription factor motif analysis to identify gene regulatory networks enriched in each song nucleus and measured acetylation of histone 3 at lysine 27 (H3K27ac) to identify chromatin regions that were transcriptionally active in the genomes of song nuclei before and after singing.

Results:

We found that singing was associated with differential regulation of about 10% of all genes in the avian genome that came in several waves across time. Less than 1% of these genes were comparably regulated in all song nuclei tested, and these comprised a core set dominated by immediate-early gene (IEG) transcription factors. By contrast, the vast majority of singing-regulated genes were regulated in only one or a subset of song nuclei, such that each song nucleus had its own dominant subset of genes regulated with defined temporal profiles, controlling a variety of functions. The promoters of many of the singing-regulated genes contained binding motifs for known early-activated transcription factors (EATFs) that become active in response to neural firing, some of which were expressed differentially between song nuclei at baseline. One EATF, calciumresponse factor (CaRF), was tested with RNA interference knockdown in cultured neurons and found to regulate the predicted genes in response to neural activity, but was also found to modulate their expression even at baseline. More strikingly, we found with H3K27ac analysis that many song nucleus–specific singing-regulated genes did not show increased chromatin regulatory element activity after singing but rather already had primed region-specific regulatory activity before singing began.

Conclusions:

We propose a dual mechanism for the diversity of behaviorally regulated genes across different brain regions in vivo (see the figure). First, the neural activity associated with singing activates EATFs, and some TFs differentially expressed in brain regions at baseline, to trigger region-specific expression of their target genes. Second, brain region–specific enhancers near activity-regulated genes are waiting in an epigenetically primed state, ready to modulate transcription of general and song nucleus– specific genes at a moment’s notice when the neurons fire. The combination of these two mechanisms underlies a great diversity of behaviorally regulated gene expression, permitting each nucleus to perform its particular function in this complex behavior.


Introduction:

Vocal learning, the ability to imitate sounds, is a trait that has undergone convergent evolution in several lineages of birds and mammals, including song-learning birds and humans. This behavior requires cortical and striatal vocal brain regions, which form unique connections in vocal-learning species. These regions have been found to have specialized gene expression within some species, but the patterns of specialization across vocallearning bird and mammal species have not been systematically explored.

Rationale:

The sequencing of genomes representing all major vocal-learning and vocal-nonlearning avian lineages has allowed us to develop the genomic tools to measure anatomical gene expression across species. Here, we asked whether behavioral and anatomical convergence is associated with gene expression convergence in the brains of vocal-learning birds and humans.

Results:

We developed a computational approach that discovers homologous and convergent specialized anatomical gene expression profiles. This includes generating hierarchically organized gene expression specialization trees for each species and a dynamic programming algorithm that finds the optimal alignment between species brain trees. We applied this approach to brain region gene expression databases of thousands of samples and genes that we and others generated from multiple species, including humans and song-learning birds (songbird, parrot, and hummingbird) as well as vocalnonlearning nonhuman primates (macaque) and birds (dove and quail). Our results confirmed the recently revised understanding of the relationships between avian and mammalian brains. We further found that songbird Area X, a striatal region necessary for vocal learning, was most similar to a part of the human striatum activated during speech production. The RA (robust nucleus of the arcopallium) analog of song-learning birds, necessary for song production, was most similar to laryngeal motor cortex regions in humans that control speech production. More than 50 genes contributed to their convergent specialization and were enriched in motor control and neural connectivity functions. These patterns were not found in vocal nonlearners, but songbird RA was similar to layer 5 of primate motor cortex for another set of genes, supporting previous hypotheses about the similarity of these cell types between bird and mammal brains.

Conclusion:

Our approach can accurately and quantitatively identify functionally and molecularly analogous brain regions between species separated by as much as 310 million years from a common ancestor. We were able to identify analogous brain regions for song and speech between birds and humans, and broader homologous brain regions in which these specialized song and speech regions are located, for tens to hundreds of genes. These genes now serve as candidates involved in developing and maintaining the unique connectivity and functional properties of vocal-learning brain circuits shared across species. The finding that convergent neural circuits for vocal learning are accompanied by convergent molecular changes of multiple genes in species separated by millions of years from a common ancestor indicates that brain circuits for complex traits may have limited ways in which they could have evolved from that ancestor.


Introduction:

Sex chromosomes originate from ordinary autosomes. Ancient sexspecific W or Y chromosomes, like that of female chicken or those of male mammals, usually have lost most functional genes, owing to a loss of recombination with their former homologs, the Z or X chromosomes. Such a recombination restriction occurred in a stepwise manner along most of the sex chromosomes in parallel in birds and mammals (creating so-called “evolutionary strata”), apart from small pseudoautosomal regions (PARs) that maintain recombination. Sex chromosomes of some basal birds like ostrich and emu have exceptionally large recombining PARs, but little is known about the genomic composition of most bird species’ sex chromosomes.

Rationale:

Here we use the newly available genomes of 17 species spanning the entire avian phylogeny to decipher the genomic architecture and evolutionary history of bird sex chromosomes. We demarcate the PAR and the nonrecombining differentiated region between Z/W of each species by their different read depths relative to autosomes. We further assemble numerous W-linked genomic regions, whose abundance and sequence divergence level with Z chromosome reflect their ages of recombination loss.

Results:

Surprisingly, we find that more than half of the studied species have a W chromosome that is not completely degenerated. Besides ostrich and emu, some Neognathae species like tropicbird and killdeer also have long PARs. The nonrecombining regions between Z/W of many species exhibit a complex pattern of “evolutionary strata,” resulting from the suppression of recombination in a stepwise and independent manner among some lineages. We conclude that the first evolutionary stratum that contains the putative male-determining gene DMRT1 formed through a Z-linked chromosome inversion in an ancestor of all birds. This was followed by one stratum formed in the ancestor of Neognathae, one stratum in the ancestor of Neoaves, and independent emergence of more recent strata in most species. Many W-linked genes have disrupted protein function or reduced gene expression, and the rate of functional decay significantly slows down in older strata.

Conclusion:

Our study uncovered an unexpected complexity of avian sex chromosomes, due to the lineage-specific recombination suppressions and different tempo of W degeneration. In contrast to mammals, some birds never experienced global recombination arrest, or differentiate at a very low rate between Z/W even after the recombination loss. This may relate to different intensities of sexual selection across bird species and explain their lack of a general chromosome-wide dosage compensation mechanism.

Úvodníky, populárně-naučné shrnutí:


Kress WJ 2014 Valuing collections. Science 346(6215): 1310
http://www.sciencemag.org/content/346/6215/1310

This year brought dismal news about the world's birds: They are vanishing at an alarming rate. Across 25 European countries, about 420 million fewer birds are present today than in 1980, a 20% decrease, especially in the 36 most common species. In North America, The State of the Birds Report 2014 indicates that over the past 40 years, the numbers of individuals across 33 species are also down by hundreds of millions. Such assessments highlight the urgency of determining the precise causes of these declines. The knowledge gleaned from the Avian Phylogenomics Project, coupled with ecological and population analyses, should provide new insights into the factors that influence bird declines and extinctions. As the project progresses over the next few years, over 60% of tissue samples for the avian analyses will be derived from archived museum collections. In this era of deteriorating natural environments, a pressing challenge is to continue to build scientific collections for future needs.


The placement of a strange South American bird called the hoatzin in the avian family tree is one of the many findings revealed this week from a massive international project analyzing the sequenced genomes of 48 bird species representing nearly every order of bird. The effort, involving 200 people from 80 labs and weeks of supercomputer time, has yielded the most definitive avian family tree yet. It has also pinpointed gene networks underlying the traits that make birds birds, such as feathers and beaks instead of teeth. In one provocative finding, a team has identified the gene network that underlies complex singing in birds—and found that the same network operates in humans, where it is presumably crucial to language. Already, 200 more bird genomes have been sequenced, with more waiting in the wings.


Genome Biology:

Cui J, Zhao W, Huang Z, Jarvis ED, Gilbert MTP, Walker PJ, Holmes EC, Zhang G 2014 Low frequency of paleoviral infiltration across the avian phylogeny. Genome Biol 15: 539

Background:

Mammalian genomes commonly harbor endogenous viral elements. Due to a lack of comparable genome-scale sequence data, far less is known about endogenous viral elements in avian species, even though their small genomes may enable important insights into the patterns and processes of endogenous viral element evolution.

Results:

Through a systematic screening of the genomes of 48 species sampled across the avian phylogeny we reveal that birds harbor a limited number of endogenous viral elements compared to mammals, with only five viral families observed: Retroviridae, Hepadnaviridae, Bornaviridae, Circoviridae, and Parvoviridae. All nonretroviral endogenous viral elements are present at low copy numbers and in few species, with only endogenous hepadnaviruses widely distributed, although these have been purged in some cases. We also provide the first evidence for endogenous bornaviruses and circoviruses in avian genomes, although at very low copy numbers. A comparative analysis of vertebrate genomes revealed a simple linear relationship between endogenous viral element abundance and host genome size, such that the occurrence of endogenous viral elements in bird genomes is 6- to 13-fold less frequent than in mammals.

Conclusions:

These results reveal that avian genomes harbor relatively small numbers of endogenous viruses, particularly those derived from RNA viruses, and hence are either less susceptible to viral invasions or purge them more effectively.

Weber CC, Nabholz B, Romiguier J, Ellegren H 2014 Kr/Kc but not dN/dS correlates positively with body mass in birds, raising implications for inferring lineage-specific selection. Genome Biol 15: 542

Background:

The ratio of the rates of non-synonymous and synonymous substitution (dN/dS) is commonly used to estimate selection in coding sequences. It is often suggested that, all else being equal, dN/dS should be lower in populations with large effective size (Ne) due to increased efficacy of purifying selection. As Ne is difficult to measure directly, life history traits such as body mass, which is typically negatively associated with population size, have commonly been used as proxies in empirical tests of this hypothesis. However, evidence of whether the expected positive correlation between body mass and dN/dS is consistently observed is conflicting.

Results:

Employing whole genome sequence data from 48 avian species, we assess the relationship between rates of molecular evolution and life history in birds. We find a negative correlation between dN/dS and body mass, contrary to nearly neutral expectation. This raises the question whether the correlation might be a method artefact. We therefore in turn consider non-stationary base composition, divergence time and saturation as possible explanations, but find no clear patterns. However, in striking contrast to dN/dS, the ratio of radical to conservative amino acid substitutions (Kr/Kc) correlates positively with body mass.

Conclusions:

Our results in principle accord with the notion that non-synonymous substitutions causing radical amino acid changes are more efficiently removed by selection in large populations, consistent with nearly neutral theory. These findings have implications for the use of dN/dS and suggest that caution is warranted when drawing conclusions about lineage-specific modes of protein evolution using this metric.

Weber CC, Boussau B, Romiguier J, Jarvis ED, Ellegren H 2014 Evidence for GC-biased gene conversion as a driver of between-lineage differences in avian base composition. Genome Biol 15: 549

Background:

While effective population size (Ne) and life history traits such as generation time are known to impact substitution rates, their potential effects on base composition evolution are less well understood. GC content increases with decreasing body mass in mammals, consistent with recombination-associated GC biased gene conversion (gBGC) more strongly impacting these lineages. However, shifts in chromosomal architecture and recombination landscapes between species may complicate the interpretation of these results. In birds, interchromosomal rearrangements are rare and the recombination landscape is conserved, suggesting that this group is well suited to assess the impact of life history on base composition.

Results:

Employing data from 45 newly and 3 previously sequenced avian genomes covering a broad range of taxa, we found that lineages with large populations and short generations exhibit higher GC content. The effect extends to both coding and non-coding sites, indicating that it is not due to selection on codon usage. Consistent with recombination driving base composition, GC content and heterogeneity were positively correlated with the rate of recombination. Moreover, we observed ongoing increases in GC in the majority of lineages.

Conclusions:

Our results provide evidence that gBGC may drive patterns of nucleotide composition in avian genomes and are consistent with more effective gBGC in large populations and a greater number of meioses per unit time; that is, a shorter generation time. Thus, in accord with theoretical predictions, base composition evolution is substantially modulated by species life history.


Background:

Nearly a quarter of all avian species is either threatened or nearly threatened. Of these, 73 species are currently being rescued from going extinct in wildlife sanctuaries. One of the previously most critically-endangered is the crested ibis, Nipponia nippon. Once widespread across North-East Asia, by 1981 only seven individuals from two breeding pairs remained in the wild. The recovering crested ibis populations thus provide an excellent example for conservation genomics since every individual bird has been recruited for genomic and demographic studies.

Results:

Using high-quality genome sequences of multiple crested ibis individuals, its thriving co-habitant, the little egret, Egretta garzetta, and the recently sequenced genomes of 41 other avian species that are under various degrees of survival threats, including the bald eagle, we carry out comparative analyses for genomic signatures of near extinction events in association with environmental and behavioral attributes of species. We confirm that both loss of genetic diversity and enrichment of deleterious mutations of protein-coding genes contribute to the major genetic defects of the endangered species. We further identify that genetic inbreeding and loss-of-function genes in the crested ibis may all constitute genetic susceptibility to other factors including long-term climate change, over-hunting, and agrochemical overuse. We also establish a genome-wide DNA identification platform for molecular breeding and conservation practices, to facilitate sustainable recovery of endangered species.

Conclusions:

These findings demonstrate common genomic signatures of population decline across avian species and pave a way for further effort in saving endangered species and enhancing conservation genomic efforts.


Background:

Birds are one of the most highly successful and diverse groups of vertebrates, having evolved a number of distinct characteristics, including feathers and wings, a sturdy lightweight skeleton and unique respiratory and urinary/excretion systems. However, the genetic basis of these traits is poorly understood.

Results:

Using comparative genomics based on extensive searches of 60 avian genomes, we have found that birds lack approximately 274 protein coding genes that are present in the genomes of most vertebrate lineages and are for the most part organized in conserved syntenic clusters in non-avian sauropsids and in humans. These genes are located in regions associated with chromosomal rearrangements, and are largely present in crocodiles, suggesting that their loss occurred subsequent to the split of dinosaurs/birds from crocodilians. Many of these genes are associated with lethality in rodents, human genetic disorders, or biological functions targeting various tissues. Functional enrichment analysis combined with orthogroup analysis and paralog searches revealed enrichments that were shared by non-avian species, present only in birds, or shared between all species.

Conclusions:

Together these results provide a clearer definition of the genetic background of extant birds, extend the findings of previous studies on missing avian genes, and provide clues about molecular events that shaped avian evolution. They also have implications for fields that largely benefit from avian studies, including development, immune system, oncogenesis, and brain function and cognition. With regards to the missing genes, birds can be considered ‘natural knockouts’ that may become invaluable model organisms for several human diseases.


GigaScience:


Background:

The evolutionary relationships of modern birds are among the most challenging to understand in systematic biology and have been debated for centuries. To address this challenge, we assembled or collected the genomes of 48 avian species spanning most orders of birds, including all Neognathae and two of the five Palaeognathae orders, and used the genomes to construct a genome-scale avian phylogenetic tree and perform comparative genomics analyses (Jarvis et al. in press; Zhang et al. in press). Here we release assemblies and datasets associated with the comparative genome analyses, which include 38 newly sequenced avian genomes plus previously released or simultaneously released genomes of Chicken, Zebra finch, Turkey, Pigeon, Peregrine falcon, Duck, Budgerigar, Adelie penguin, Emperor penguin and the Medium Ground Finch. We hope that this resource will serve future efforts in phylogenomics and comparative genomics.

Findings:

The 38 bird genomes were sequenced using the Illumina HiSeq 2000 platform and assembled using a whole genome shotgun strategy. The 48 genomes were categorized into two groups according to the N50 scaffold size of the assemblies: a high depth group comprising 23 species sequenced at high coverage (>50X) with multiple insert size libraries resulting in N50 scaffold sizes greater than 1 Mb (except the White-throated Tinamou and Bald Eagle); and a low depth group comprising 25 species sequenced at a low coverage (~30X) with two insert size libraries resulting in an average N50 scaffold size of about 50 kb. Repetitive elements comprised 4%-22% of the bird genomes. The assembled scaffolds allowed the homology-based annotation of 13,000 ~ 17000 protein coding genes in each avian genome relative to chicken, zebra finch and human, as well as comparative and sequence conservation analyses.

Conclusions:

Here we release full genome assemblies of 38 newly sequenced avian species, link genome assembly downloads for the 7 of the remaining 10 species, and provide a guideline of genomic data that has been generated and used in our Avian Phylogenomics Project. To the best of our knowledge, the Avian Phylogenomics Project is the biggest vertebrate comparative genomics project to date. The genomic data presented here is expected to accelerate further analyses in many fields, including phylogenetics, comparative genomics, evolution, neurobiology, development biology, and other related areas.

Viz také:


Background:

Penguins are flightless aquatic birds widely distributed in the Southern Hemisphere. The distinctive morphological and physiological features of penguins allow them to live an aquatic life, and some of them have successfully adapted to the hostile environments in Antarctica. To study the phylogenetic and population history of penguins and the molecular basis of their adaptations to Antarctica, we sequenced the genomes of the two Antarctic dwelling penguin species, the Adélie penguin [Pygoscelis adeliae] and emperor penguin [Aptenodytes forsteri].

Results:

Phylogenetic dating suggests that early penguins arose ~60 million years ago, coinciding with a period of global warming. Analysis of effective population sizes reveals that the two penguin species experienced population expansions from ~1 million years ago to ~100 thousand years ago, but responded differently to the climatic cooling of the last glacial period. Comparative genomic analyses with other available avian genomes identified molecular changes in genes related to epidermal structure, phototransduction, lipid metabolism, and forelimb morphology.

Conclusions:

Our sequencing and initial analyses of the first two penguin genomes provide insights into the timing of penguin origin, fluctuations in effective population sizes of the two penguin species over the past 10 million years, and the potential associations between these biological patterns and global climate change. The molecular changes compared with other avian genomes reflect both shared and diverse adaptations of the two penguin species to the Antarctic environment.

O'Brien SJ, Haussler D, Ryder O 2014 The birds of Genome10K. GigaScience 3: 32

Everyone loves the birds of the world. From their haunting songs and majesty of flight to dazzling plumage and mating rituals, bird watchers - both amateurs and professionals - have marveled for centuries at their considerable adaptations. Now, we are offered a special treat with the publication of a series of papers in dedicated issues of Science, Genome Biology and GigaScience (which also included pre-publication data release). These present the successful beginnings of an international interdisciplinary venture, the Avian Phylogenomics Project that lets us view, through a genomics lens, modern bird species and the evolutionary events that produced them.


BMC Genomics:


Background:

The availability of multiple avian genome sequence assemblies greatly improves our ability to define overall genome organization and reconstruct evolutionary changes. In birds, this has previously been impeded by a near intractable karyotype and relied almost exclusively on comparative molecular cytogenetics of only the largest chromosomes. Here, novel whole genome sequence information from 21 avian genome sequences (most newly assembled) made available on an interactive browser (Evolution Highway) was analyzed.

Results:

Focusing on the six best-assembled genomes allowed us to assemble a putative karyotype of the dinosaur ancestor for each chromosome. Reconstructing evolutionary events that led to each species' genome organization, we determined that the fastest rate of change occurred in the zebra finch and budgerigar, consistent with rapid speciation events in the Passeriformes and Psittaciformes. Intra- and interchromosomal changes were explained most parsimoniously by a series of inversions and translocations respectively, with breakpoint reuse being commonplace. Analyzing chicken and zebra finch, we found little evidence to support the hypothesis of an association of evolutionary breakpoint regions with recombination hotspots but some evidence to support the hypothesis that microchromosomes largely represent conserved blocks of synteny in the majority of the 21 species analyzed. All but one species showed the expected number of microchromosomal rearrangements predicted by the haploid chromosome count. Ostrich, however, appeared to retain an overall karyotype structure of 2n = 80 despite undergoing a large number (26) of hitherto un-described interchromosomal changes.

Conclusions:

Results suggest that mechanisms exist to preserve a static overall avian karyotype/genomic structure, including the microchromosomes, with widespread interchromosomal change occurring rarely (e.g., in ostrich and budgerigar lineages). Of the species analyzed, the chicken lineage appeared to have undergone the fewest changes compared to the dinosaur ancestor.


Background 

Songbirds (oscine Passeriformes) are among the most diverse and successful vertebrate groups, comprising almost half of all known bird species. Identifying the genomic innovations that might be associated with this success, as well as with characteristic songbird traits such as vocal learning and the brain circuits that underlie this behavior, has proven difficult, in part due to the small number of avian genomes available until recently. Here we performed a comparative analysis of 48 avian genomes to identify genomic features that are unique to songbirds, as well as an initial assessment of function by investigating their tissue distribution and predicted protein domain structure.

Results

Using BLAT alignments and gene synteny analysis, we curated a large set of Ensembl gene models that were annotated as novel or duplicated in the most commonly studied songbird, the Zebra finch (Taeniopygia guttata), and then extended this analysis to 47 additional avian and 4 non-avian genomes. We identified 10 novel genes uniquely present in songbird genomes. A refined map of chromosomal synteny disruptions in the Zebra finch genome revealed that the majority of these novel genes localized to regions of genomic instability associated with apparent chromosomal breakpoints. Analyses of in situ hybridization and RNA-seq data revealed that a subset of songbird-unique genes is expressed in the brain and/or other tissues, and that 2 of these (YTHDC2L1 and TMRA) are highly differentially expressed in vocal learning-associated nuclei relative to the rest of the brain.

Conclusions 

Our study reveals novel genes unique to songbirds, including some that may subserve their unique vocal control system, substantially improves the quality of Zebra finch genome annotations, and contributes to a better understanding of how genomic features may have evolved in conjunction with the emergence of the songbird lineage.


BMC Evolutionary Biology:


Background:

Vertebrate skin appendages are constructed of keratins produced by multigene families. Alpha (α) keratins are found in all vertebrates, while beta (β) keratins are found exclusively in reptiles and birds. We have studied the molecular evolution of these gene families in the genomes of 48 phylogenetically diverse birds and their expression in the scales and feathers of the chicken.

Results:

We found that the total number of α-keratins is lower in birds than mammals and non-avian reptiles, yet two α-keratin genes (KRT42 and KRT75) have expanded in birds. The β-keratins, however, demonstrate a dynamic evolution associated with avian lifestyle. The avian specific feather β-keratins comprise a large majority of the total number of β-keratins, but independently derived lineages of aquatic and predatory birds have smaller proportions of feather β-keratin genes and larger proportions of keratinocyte β-keratin genes. Additionally, birds of prey have a larger proportion of claw β-keratins. Analysis of α- and β-keratin expression during development of chicken scales and feathers demonstrates that while α-keratins are expressed in these tissues, the number and magnitude of expressed β-keratin genes far exceeds that of α-keratins.

Conclusions:

These results support the view that the number of α- and β-keratin genes expressed, the proportion of the β-keratin subfamily genes expressed and the diversification of the β-keratin genes have been important for the evolution of the feather and the adaptation of birds into multiple ecological niches.


Background:

Sex chromosomes exhibit many unusual patterns in sequence and gene expression relative to autosomes. Birds have evolved a female heterogametic sex system (male ZZ, female ZW), through stepwise suppression of recombination between chrZ and chrW. To address the broad patterns and complex driving forces of Z chromosome evolution, we analyze here 45 newly available bird genomes and four species’ transcriptomes, over their course of recombination loss between the sex chromosomes.

Results:

We show Z chromosomes in general have a significantly higher substitution rate in introns and synonymous protein-coding sites than autosomes, driven by the male-to-female mutation bias (‘male-driven evolution’ effect). Our genome-wide estimate reveals that the degree of such a bias ranges from 1.6 to 3.8 among different species. G + C content of third codon positions exhibits the same trend of gradual changes with that of introns, between chrZ and autosomes or regions with increasing ages of becoming Z-linked, therefore codon usage bias in birds is probably driven by the mutational bias. On the other hand, Z chromosomes also evolve significantly faster at nonsynonymous sites relative to autosomes (‘fast-Z’ evolution). And species with a lower level of intronic heterozygosities tend to evolve even faster on the Z chromosome. Further analysis of fast-evolving genes’ enriched functional categories and sex-biased expression patterns support that, fast-Z evolution in birds is mainly driven by genetic drift. Finally, we show in species except for chicken, gene expression becomes more male-biased within Z-linked regions that have became hemizygous in females for a longer time, suggesting a lack of global dosage compensation in birds, and the reported regional dosage compensation in chicken has only evolved very recently.

Conclusions:

In conclusion, we uncover that the sequence and expression patterns of Z chromosome genes covary with their ages of becoming Z-linked. In contrast to the mammalian X chromosomes, such patterns are mainly driven by mutational bias and genetic drift in birds, due to the opposite sex-biased inheritance of Z vs. X.


PLOS ONE:


The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog – Shh; Indian hedgehog – Ihh; and Desert hedgehog – Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots.


Genome Biology and Evolution:


Chicken repeat 1 (CR1) retroposons are Long INterspersed Elements (LINEs) that are ubiquitous within amniote genomes and constitute the most abundant family of transposed elements in birds, crocodilians, turtles, and snakes. They are also present in mammalian genomes, where they reside as numerous relics of ancient retroposition events. Yet, despite their relevance for understanding amniote genome evolution, the diversity and evolution of CR1 elements has never been studied on an amniote-wide level. We reconstruct the temporal and quantitative activity of CR1 subfamilies via presence/absence analyses across crocodilian phylogeny and comparative analyses of twelve crocodilian genomes, revealing relative genomic stasis of retroposition during genome evolution of extant Crocodylia. Our large-scale phylogenetic analysis of amniote CR1 subfamilies suggest the presence of at least seven ancient CR1 lineages in the amniote ancestor; and amniote-wide analyses of CR1 successions and quantities reveal differential retention (presence of ancient relics or recent activity) of these CR1 lineages across amniote genome evolution. Interestingly, birds and lepidosaurs retained the fewest ancient CR1 lineages among amniotes and also exhibit smaller genome sizes. Our study is the first to analyze CR1 evolution in a genome-wide and amniote-wide context and the data strongly suggest that the ancestral amniote genome contained myriad CR1 elements from multiple ancient lineages, and remnants of these are still detectable in the relatively stable genomes of crocodilians and turtles. Early mammalian genome evolution was thus characterized by a drastic shift from CR1 prevalence to dominance and hyperactivity of L2 LINEs in monotremes and L1 LINEs in therians.


Journal of Comparative Neurology:


Only a few distantly related mammals and birds have the trait of complex vocal learning, which is the ability to imitate novel sounds. This ability is critical for speech acquisition and production in humans, and is attributed to specialized forebrain vocal control circuits that have several unique connections relative to adjacent brain circuits. As a result, it has been hypothesized that there could exist convergent changes in genes involved in neural connectivity of vocal learning circuits. In support of this hypothesis, expanding on our related study (Pfenning et al. [2014] Science 346: 1256846), here we show that the forebrain part of this circuit that makes a relatively rare direct connection to brainstem vocal motor neurons in independent lineages of vocal learning birds (songbird, parrot, and hummingbird) has specialized regulation of axon guidance genes from the SLIT-ROBO molecular pathway. The SLIT1 ligand was differentially downregulated in the motor song output nucleus that makes the direct projection, whereas its receptor ROBO1 was developmentally upregulated during critical periods for vocal learning. Vocal non-learning bird species and male mice, which have much more limited vocal plasticity and associated circuits, did not show comparable specialized regulation of SLIT-ROBO genes in their non-vocal motor cortical regions. These findings are consistent with SLIT and ROBO gene dysfunctions associated with autism, dyslexia, and speech sound language disorders and suggest that convergent evolution of vocal learning was associated with convergent changes in the SLIT-ROBO axon guidance pathway.

Zdroje:

Abstrakty k listopadu 2012, díl 1.

Viz také:
    Kvůli dlouhatánským článkům o moderních ptácích jsem úplně zanedbával přehledy nových abstraktů, kterých se zase za poslední dva měsíce nashromáždilo úctyhodné množství. Pterosauři už tradičně dostanou v rámci pozitivní diskriminace svůj vlastní přehled.

    Půjdeme-li v abecedním pořadí, Averianov a Alifanov v první ze zde uvedených studií krátce shrnují nový materiál z Tádžikistánu, patřící hadrosauridům – jedněm z nejodvozenějších kachnozobých dinosaurů. Součástí revize je i přeřazení taxonu Troodon isfarensis mezi hadrosauridy, což je oproti původnímu zařazení taxonu docela výrazná změna: troodontidi jsou odvození teropodi, které bychom už klidně mohli počítat mezi bazální ptáky. Na druhou stranu něco takového není příliš překvapivé, neboť prakticky všechny staré dinosauří taxony (Megalosaurus, Iguanodon, Plateosaurus, Palaeeudyptes) se dříve či postěji staly "taxonomickým odpadkovým košem" (wastebasket taxa), do nějž bylo z lenosti řazeno vše aspoň trochu podobného nebo i úplně nepodobného.
    Baker a spol. velmi pěkně ukazují, co může být příčinou konfliktů mezi molekulárními a morfologickými daty. Velká pozornost je – nejev v této souvislosti – věnována nesouladu mezi druhovým stromem a stromy jednotlivých genů, a právě jeho vliv na ptačí fylogenetiku Baker s kolektivem zkoumají. Po počátečním podezření, že by tento jev mohl stát za polyfylií "běžců", které se nicméně nenaplnilo (Haddrath & Baker 2012), přicházejí na řadu dlouhokřídlí. Multilokusové studie kombinující jaderné i mitochondriální sekvence (Baker et al. 2007; Fain & Houde 2007) ukázaly, že kulíci Pluvialis (tj. kulík hnědokřídlý, bledý, zlatý a pacifický) ve skutečnosti nepatří ke zbytku kulíkovitých (Charadriidae), ale ke skupině složené z morfologicky výrazně odlišných tenkozobcovitých (Recurvirostridae), ústřičníků (Haematopus) a srpatek (Ibidorhyncha). Jenže odlišné geny mohou mít různé historie a zřetězit je při analýze všechny dohromady nemusí být nejlepší nápad, dokonce i když jim dáme samostatné modely evoluce. U pluvialise navíc situaci zhoršovalo použití mitochondriálních genů, které nejsou vzájemně nezávislými zdroji informací – mtDNA se z generace na generaci předává coby jediný "superlokus". Ideální není ani to, že všechny dosavadní studie pracovaly s kulíkem bledým (Pluvialis squatarola), který se od zbývajících pluvialisů odštěpil jako první (Elbourne 2011). Baker a spol. proto vzali 8 nových jaderných genů, které až na výjimky pocházejí z odlišných chromozomů (což by mělo zaručovat jejich nezávislou evoluci), nevykazují známky toho, že by v rámci dlouhokřídlých prodělaly nějakou duplikaci (takže není problém s určením ortologie) a které se velmi rychle se vyvíjejí. Zároveň reanalyzovali některé předchozí datasety podporující parafylii kulíkovitých (Baker et al. 2007; Fain & Houde 2007), aby otestovali, zda za tímto výsledkem nestojí nějaký bias.

Kulík bledý (Pluvialis squatarola), nejbazálnější zástupce kladu Pluvialis, vyskytující se běžně i na území ČR. Jaké místo zaujímá ve fylogenezi bahňáků? (Zdroj: photoree.com)

    Už Haddrath & Baker (2012) na mě zapůsobili důrazem kladeným na metodologii a s nynější Bakerovou studií je to zrovna tak. Autoři nasadili nejnovější verzi MrBayese (Ronquist et al. 2012) a program *BEAST, který skrze koalescenci genových stromů odhaduje strom druhový. Přejdeme-li k výsledkům: druhový strom z 8 nových genů silně (posteriorní pravděpodobnost = 1) podporuje monofylii kulíkovitých: Pluvialis je zde sesterským taxonem celého zbytku skupiny. Ohledání jednotlivých genových stromů ukázalo, že dva geny tuto topologii přímo podporují a žádný ze zbývajících s ní není v konfliktu – tyto ostatní geny zpravidla nedokázaly rozřešit celý strom a Pluvialis na nich stál v polytomii s tenkozobci, ústřičníky a ostatními kulíkovitými. Zato rozbor dataset Bakera a spol. (2007) i po reanalýze tvrdošíjně odkrývá sesterský vztah mezi pluvialisem a skupinou (Recurvirostridae + Haematopus). Podpora sice není velká, ale ani RY-kódování rychle se vyvíjejících mitochondriálních genů (které pro analýzu zcela zneviditelní tranzice, častější z obou typů nukleotidových substitucí, a potenciálně tedy posílí fylogenetický signál), ani jejich úplné vyřazení z analýzy tento příbuzenský svazek zcela neeliminuje, přestože jeho posteriorní pravděpodobnost poněkud klesne. Navíc prokazatelně nejde o důsledek podobného zastoupení bází v sekvencích pluvialise a tenkozobcovitých či ústřičníku – moc podobné totiž vlastně není. Také dataset Faina a Houde'a monofylii kulíkovitých ani v nové analýze nepodpořil: podařilo se sice dosáhnout toho, že Pluvialis se stal sesterskou skupinou celého kladu (kulíkovití + (tenkozobcovití + ústřičníci)) spíš než tenkozobcovitých a ústřičníků samotných, ale to je všechno.
    Nejprve autoři zvažují možnost, že za tyto neshody může nekompletní třídění linií (ILS), které je časté především u rychlých diverzifikací. Ty se na fylogenetických stromech projevují krátkými větvemi, a větve spojující pluvialise s ostatními taxony jsou skutečně dost krátké. Jenže konfliktů mezi geny je příliš málo na to, aby za vzniklý rozpor s druhovým stromem mohlo být zodpovědné právě ILS – v datasetu Faina a Houde'a parafylii kulíků táhne "hlasitý jedináček" ADH5 (čtyři zbývající geny sesterskou skupinu pluvialise nejsou schopny určit) a Baker et al. (2007) ke stejnému výsledku dospěli jen díky mitochondriálním genům. Baker a spol. proto uzavírají s tím, že pro nekompletní třídění linií u báze kulíkovitých nejsou dostatečné důkazy a parafylie této skupiny odhalená v předchozích studiích je důsledkem rychle evolvujících mt-genů, zkombinovaných s nedostatečným množstvím jaderných lokusů, které nedokázaly rozřešit příbuzenské vztahy v hloubce odpovídající pluvialisově fylogenetické pozici. Výsledek své nové analýzy považují za dostatečně průkazný, jelikož se dobře shoduje s morfologií a etologií: čtyři zástupci pluvialise jsou typickými kulíky, kteří s ostatními zástupci Charadriidae sdílejí tvar těla, krátký zobák i zvyk hledat potravu ve vodě zrakem. Studii uzavírají s následujícími doporučeními: 1) mtDNA v ptačí fylogenetice používat jen opatrně – občas na ni spoleh je, jindy je však dost zavádějící; 2) metody pro rekonstrukci druhových stromů, které berou v úvahu koalescenci, fungují dobře i tehdy, když je aplikujeme na nepříliš informativní jaderné geny a skupiny zasažené ILS; 3) zcela zásadní je vzít koalescenci v potaz při molekulárním datování, aby se stáří divergencí uměle nezvyšovalo o dobu před vlastní speciací, po kterou alely koexistovaly v jedné populaci.

Výsledky bayesovských analýz pro (A) nový dataset složený z 8 jaderných genů o celkových 4132 párech bází, (B) dataset Bakera a spol. (2007) složený z 1 jaderného a 3 mitochondriálních genů o celkových 5169 párech bází a (C) dataset Faina a Houde'a (2007) složený z 3 jaderných a 2 mitochondriálních genů o celkových 4642 párech bází. Čísla u uzlů udávají posteriorní pravděpodobnosti, čtverečky znamenají posteriorní pravděpodobnost 1. Je vidět, že Pluvialis je velmi těžce usaditelný a kolísá mezi postavením na bázi kulíkovitých (A), na bázi skupiny složené z ústřičníků a tenkozobcovitých (B) a sesterským vztahem vůči kladu složenému z obou předchozích skupin (C). Ačkoli je větev spojující pluvialise s jeho sesterským taxonem poměrně krátká (zvlášť dobře viditelné u A, B), Baker a spol. se nedomnívají, že by tyto konflikty vysvětlovalo nekompletní třídění linií. (Modifikováno z Baker et al. 2012: Figure 3)

    Bittencourt s kolektivem se v další z nových studií věnují kombinaci, která se za poslední roky stala typickou – jihoamerickým bazálním sauropodomorfům. S taxony, které se jako vůbec první odštěpily z větve, na níž stojí i slavní giganti typu argentinosaura nebo brachiosaura, se od popisu panfágie tři roky zpátky doslova roztrhl pytel (Martínez & Alcober 2009). Potenciálně přelomový pak byl popis chromogisaura (Ezcurra 2010), v němž autor odkryl na bázi sauropodomorfů dosud netušenou monofyletickou skupinu, pojmenovanou Guaibasauridae, jejíž zástupci na dřívějších stromech tvořili spíše sérii větví čím dál tím vzdálenějších od odvozenějších sauropodomorfů. Pozice guaibasauridů na samé bázi sauropodomorfů však současně vyvolává pochyby o jejich monofylii – co když jsou jejich apomorfie ve skutečnosti sjednocujícími znaky všech sauropodomorfů, které byly u odvozenějších zástupců skupiny (Pantydraco, Thecodontosaurus, Plateosauria) druhotně ztraceny nebo modifikovány, a naše analýzy je tak vlastně seskupují na základě primitivních znaků? Tyto i další otázky čekají na rozřešení, a materiál popisovaný Bittencourtem a spol. by tomu mohl napomoct. Stejně jako prakticky všechny výše uvedené objevy pochází z Jižní Ameriky – na rozdíl od známějších souvrství Ischigualasto (Panphagia, Chromogisaurus) nebo Santa Maria (Saturnalia) však z Caturrita Formation, která je o něco mladší. Konkrétně se popisu dočkaly tři exempláře z lokality Botucaraí Hill: izolovaný druhý křížový obratel, zlomky pánve a izolovaná sedací kost. Z Caturrity už je znám silesauridní dinosauriform (Ferigolo & Langer 2006), fosilie předběžně identifikovaná jako teropod (Langer et al. 2011) a bazální sauropodomorfové (Leal et al. 2004).
    Křížový obratel se proporcemi podobá guaibasaurovi, hlavně pak rozšířením centra v oblasti parapofýz (místa kontaktu s kapitulem, tj. níže položeným proximálním koncem žebra). Lze jej naopak odlišit od krurotarzů, tj. zástupců krokodýlí větve archosaurů, a bazálních dinosauriformů typu silesaura. Unikátním znakem obratle jsou otvůrky obklopující zespoda a zezadu parapofýzu: podobné jsou známy od saturnálie a guaibasaura, kteří ale měli jen jeden nebo dokonce vůbec žádný; zdá se, že tento znak podléhal značné variabilitě. Nic podobného každopádně neznáme od žádných jiných archosaurů; nejbližším ekvivalentem jsou asi pleurocély odvozených teropodů, které jsou ale daleko větší. Křížová žebra a příčné výběžky formují téměř spojitý "sakrální plát", podobně jako třeba u (herrerasauridního?) staurikosaura. Ten je však přerušen jakýmsi dorzolaterálním zářezem mezi výběžkem a žebrem, což je znak, který caturritský obratel sdílí se sauropodomorfy. Přiřazení k saturnálii nebo guaibasaurovi nelze vyloučit ani potvrdit: autapomorfie ani jednoho z těchto taxonů se nesoustředí v křížových obratlích (Langer et al. 2011), a dokonce i celý klad Guaibasauridae zde postrádá jakékoli typické odvozené rysy (Ezcurra 2010).
    Fragment pánve, sestávající toliko z levé sedací kosti a proximální části levé kosti stydké, je zachovaný velmi nedokonale a jisté není ani to, že pochází z jednoho jedince. Přesto nese několik informativních znaků: v oblasti kyčelní jamky např. najdeme dva výstupky: přední, který vybíhá do strany (podobný mají i bazální dinosauriformové Marasuchus a Silesaurus) a zadní, který má z bočního pohledu trojúhelníkovitý tvar a který je přítomný u silesauridů, eoraptora, bazálních sauropodomorfů (Saturnalia) i teropodů (Liliensternus). Na výběžku, kterým stydká kost kontaktovala kost sedací, je patrná acetabulární jamka ve formě jakési brázdy, kterou známe i od saturnálie, guaibasaura a silesaura. Jde zřejmě o zvětšenou verzi "ischio-acetabulární rýhy" některých dinosauriformů a současně o homolog jamky spojující kloubící plošku pro kyčelní kost s výběžkem pro skloubení s kostí sedací, kterou disponuje řada teropodů, raní sauropodomorfové, herrerasauridi a zřejmě i Eoraptor. Celkově lze říci, že i přes četné shody se silesaurem jsou tyto části pánve nejpodobnější saturnálii, zároveň se ale od ní odlišují (např. většími rozměry, trojúhelníkovitě tvarovaným tělem kosti sedací) dostatečně na to, aby byly přiřazeny novému taxonu. Absence rysů přítomných u "jádra prosauropodů" (massospondylidů, riojasauridů, plateosauridů) současně ukazuje, že majitel těchto kostí zřejmě fylogeneticky spadal mimo klad Plateosauria (= Plateosauridae, Sauropoda, jejich poslední společný předek a všichni potomci tohoto předka). Konečně izolovaná pravá sedací kost se velmi podobá již popsanému levému elementu; na spodním okraji vidíme jakýsi "zásek" mezi tělem kosti a obturátorovým výběžkem (tj. vyvýšenou oblastí, na kterou se připojují svaly upínající se na stehenní kost), který je častý u teropodů, ale slabější obdobu najdeme i u plateosaura (Yates 2003) Tato fosilie nejspíše patří stejnému taxonu jako obě předchozí pánevní kosti.
    Autoři poznamenávají, že při srovnávání caturritského materiálu se soudobými archosaury zaznamenali mnoho typicky sauropodomorfních znaků u guaibasaura, což podporuje jeho příbuzenství se saturnálii, které na základě znaků kyčelní kosti obhajovali už Bonaparte et al. (2007) a fylogenetickou analýzou podložil Ezcurra (2010). Langer et al. (2011) však argumentovali, že sauropodomorfní znaky guaibasaura jsou primitivní znaky společné všem raným plazopánvým dinosaurům, a ukázali, že fylogenetickou pozici mnoha nekompletních bazálních taxonů (jako je právě Guaibasaurus) silně ovlivňují i malé změny v samplingu znaků. Bittencourt a spol. proto navrhují zařadit do budoucích analýz znaky popsané v jejich současné studii, jako jsou otvůrky na křížových obratlech v okolí parapofýz nebo odchylky v "sakrálním plátu".

UFPel 014, druhý křížový obratel neznámého raného sauropodomorfa ze souvrství Caturrita, popsaný Bittencourtem a kolektivem, na fotografiích zespoda (A), zepředu (C), seshora (D), z pravého boku (E), zezadu (F), šikmého ventrolaterálního pohledu a na interpretační kresbě opět zespoda (B). Měřítko odpovídá 3 cm, pro význam zkratek viz původní studii. (Zdroj: Bittencourt et al. 2012: Figure 3)

    Campione a Evans se pokouší přijít s objektivní metodou pro určování veličiny, která je při výzkumu dinosauří paleobiologie velice důležitá – hmotnosti. Hmotnost přímo souvisí s fyziologií (rychlost metabolizmu, tempo růstu) na jedné straně a ekologií (potravní nároky a z nich vyplývající hustota populace) na straně druhé. K jejímu určení u vymřelých zvířat jsou dnes v zásadě používány dvě metody: vytváření zmenšených 3D modelů, spočtení jejich objemu a vynásobení vhodnou hustotou je jednou z nich, přímý výpočet ze vzorečků pracujících s rozměry dlouhých kostí pak tou druhou. Ta první trpí obrovskými problémy: Campione a spoluautoři citují dvě studie od stejného týmu autorů, publikované v rozmezí pouhých šesti let a založené na stejné kostře (Gunga et al. 2002, 2008), totiž slavném brachiosaurovi (či giraffatitanovi?) v berlínském Museum für Naturkunde, dospěly k drasticky odlišným odhadům (38 tun verzus 74,4 tun) jen kvůli odlišnému tvaru modelu a především odhadu hustoty. Přávě u sauropodů je zcela zásadní započítat vliv rozsáhlých vzdušných vaků. Do vytváření modelů jde navíc tolik netestovaných předpokladů o vlastnostech měkkých tkání, že je těžké kontrolovat zdroje chyb. Metody založené na škálování dlouhých kostí jsou slibnější, ale jejich aplikace na taxony, které se nacházejí mimo velikostní rozmezí svých žijících příbuzných (jako je např. pra-nosorožec Indricotherium nebo řada neptačích dinosaurů), byla kritizována. Kritiky se dočkala zvláště metoda Andersona a spol. (Anderson et al. 1985), dost často aplikovaná i na neptačí dinosaury. K odvození škálovacích vztahů totiž používá vzorek žijících taxonů s nepoměrně vysokým zastoupením "kopytníků"* (Carrano 2001), jejichž končetiny mají odlišné proporce než u ostatních savců – ovšem závěr, že vztahy mezi obvodem končetinových kostí a tělesnou hmotností jsou u nich také jiné, z toho automaticky nevyplývá. Pochyby panují i o tom, zda vztah těchto veličin opravdu popíše jediná rovnice platná pro všechny suchozemské obratlovce bez ohledu na to, zda jsou dvounozí či čtyřnozí nebo zda mají končetiny mířící do stran či kolmo pod tělem. Právě to chtějí Campione s Evansem změnit: s rozsáhlým vzorkem sestávajícím z 200 savců a 47 neptačích sauropsidů nejenže chtějí tyto kritiky otestovat, ale slibují i zformulování univerzální škálovací rovnice platné pro všechna suchozemská čtyřnohá zvířata, která je (i po korekci o fylogenetickou korelaci) až překvapivě jednoduchá:

$$ \log m_b = 2{,}754 \times \log c_{h+f} - 1{,}097 $$
    Autoři konstatují, že odhady vyvozené z této rovnice mají nepříliš překvapivě blíž k odhadům vzešlým z metody Andersona a spol. než z metod založených na trojrozměrných modelech. Do své studie zahrnují velmi pěknou tabulku, v nichž srovnávají svoje výsledky pro některé dobře známé exempláře a taxony neptačích dinosaurů. Najdeme v ní odhady z novějších studií (Henderson 1999; Seebacher 2001), od Grega Paula – který své odhady silně propaguje (viz např. Paul 2010, kde na jejich základě zpochybnil Nuddsovy a Dyke'ovy závěry o nelétavosti bazálních ptáků), ale nenamáhá se uvést, jak k nim přesně dochází – i jednu opravdu archaickou práci (Colbert 1962), nad jejímiž údaji se dnes občas lze už jen pousmát: 78-tunový Brachiosaurus je opravdu mimo. Ukazuje se, že nová rovnice vyhazuje oproti alternativním metodám překvapivě vysoké hodnoty: 35,8 tun pro brachiosaura je druhým nejvyšším odhadem hned po tom Colbertově a 8,7 tun pro taxon Iguanodon bernissartensis je dokonce suverénně nejvyšší hodnotou ze všech.
    Odhadováním hmotnosti dinosaurů se zabývá i další z nových studií, kterou v Journal of Vertebrate Paleontology publikoval Dave Hone, známý coby autor Archosaur Musings. Ve své nové práci si všímá toho, že jako zkratka pro přibližný odhad hmotnosti jsou často užívány lineární rozměry (např. Seebacher 2001). Takový postup skutečně může fungovat: pokud se tvar těla nemění, hmotnost roste s třetí mocninou libovolného lineárního měřítka, a tak teoreticky můžeme přibližně odhadnout i hmotnost zvířat známých jen z velice fragmentárních pozůstatků. Stačí, když tento materiál stačí k aspoň přibližnému určení fylogenetické pozice svého nositele. Nejoblíbenějším měřítkem je jednoznačně celková délka těla, ale právě tady Hone vidí velký problém. Úplnou ocasní páteř, která k délce těla velmi významně přispívá, známe jen od překvapivě malého počtu neptačích dinosaurů, a odhady založené na méně kompletních pozůstatcích se silně liší zdroj od zdroje. Jako spolehlivější alternativu autor navrhuje vzdálenost mezi čenichem a kostí křížovou, ale už v abstraktu připomíná, že celková délka těla (tj. včetně ocasu) by neměla být úplně opuštěna, jelikož je cenná pro srovnávání se staršími pracemi.

*Uvozkováni jsou přirozeně proto, že "kopytníci" nejsou přirozenou skupinou Otázku, co všechno vlastně dovnitř "kopytníků" patří, lze ztotožnit s otázkou fylogeneze laurasiatérií a tvoří jeden z nejzajímavějších problémů ve fylogenetice skupiny tak nudné, jakou jsou savci. Osobně stále tíhnu k hypotéze Pegasoferae, podle nějž nejmenší klad zahrnující sudokopytníky a lichokopytníky musí (krom kytovců, což už je dnes samozřejmost) zahrnovat také šelmy, luskouny a letouny.

    Chan a spol. se zaměřují na souvislost mezi délkou primárních (ručních) letek a způsobem letu u druhohorních ptáků. Upozorňují na to, že dosavadní studie (McGowan & Dyke 2007; Dyke & Nudds 2009) se prakticky výhradně soustředily na proporce kostí v křídle a úplně ignorovaly letky, které se přitom u žijících ptáků mohou podílet až na polovině celkové délky křídla a které se v té či oné podobě dochovaly u tisícovek fosilií předmoderních ptáků. Pouze Wang et al. (2011) zkombinovali údaje o peří s údaji z kostry a došli k závěru, že Confuciusornis (jeden z nejranějších krátkoocasých ptáků – jeho ocasní páteř už byla zredukována na krátký, srostlý pygostyl) létal jinak než jakýkoli žijící pták a dost možná se omezoval jen na plachtění. Aby autoři tyto závěry otestovali a zjistili, kteří žijící ptáci jsou z hlediska letových schopností nejbližšími protějšky svých druhohorních příbuzných, sestavili dataset sestávající z těch ptáků, od nichž je možné zjistit délku letek i prstů.
    Tato podmínka podstatně omezila jeho velikost: Chan a spol. nakonec zahrnuli 50 exemplářů druhohorních ptáků a 82 exemplářů od 34 taxonů ptáků žijících – mezi nimi kachny, lelkovité, potáplice, trubkonosé, ibise, volavku, kormorána, sovy, káně, kondora, a celou řadu pěvců. Bonusem je Archaeopteryx a tři další dinosauři, které Chan a spol. označují za neptačí: Anchiornis, klouzající mezi troodontidy a archeopterygidy; bazální dromeosaurid Microraptor a Tianyuraptor, který sice rovněž patří mezi mikroraptoriny, ale jakékoli letové schopnosti pravděpodobně postrádal.  Data v analýze nereprezentují taxony, ale jednotlivé exempláře – jinak to ani nešlo, protože řada zahrnutých ptačích fosilií musí být teprve popsána a pojmenována. V analýze jsou označeni jako "neurčití Enantiornithes" a na podkladovém fylogenetickém stromě byli všichni umístěni do jedné velké polytomie. Tento strom je mimochodem z kategorie "epic fail" – příbuzenské vztahy mezi moderními ptáky vycházejí z Livezeye a Zusiho (2007) spíše než z fylogenomiky, což by až taková katastrofa nebyla, ale Chan a spol. označují jménem Passeriformes (pěvci) chybnou skupinu, která kromě vlastních pěvců zahrnuje i ledňáčka a datla. (Je to o to nešťastnější, že zrovna existenci skupiny, která by zahrnovala pěvce, datly a ledňáčky, ale už ne sovy a denní dravce, fylogenomika robustně zamítá.) Podle způsobu letu autoři rozdělili ptáky do skupin charakterizovaných 1) potápením, 2) rychlým mávavým letem, 3) obratným manévrovaním ve spojení s mávavým letem, 4) pomalým mávavým letem ve spojení s rychlým vzletem a 5) plachtěním. Délku předních končetin rozdělili na pažní kost, předloktí, ruku a nejdelší primární letku.
    Následujícím krokem bylo zkonstruování morfoprostorů pro odlišné skupiny pomocí PCA (Principal Component Analysis). Po suchém rozebrání toho, které veličiny rostou či klesají na kterých osách, přecházejí Chan a spol. k obecným trendům. Délka paže u druhohorních teropodů podle všeho klesá směrem ke korunnímu kladu (minimálně od deinonychosaurů k enantiornitům; o tom, zda trend pokračuje i u předmoderních euornitů, nelze rozhodnout pro malou velikost vzorku). Jelikož rozpětí křídel u žijících ptáků roste s tělesnou hmotností, mohlo by jít o příznak celkového zmenšování těla v průběhu ptačí evoluce, přestože předchozí studie v tělesných rozměrech druhohorních ptáků žádný trend neodhalily (Butler & Goswami 2008). Směrem od deinonychosaurů k protiptákům také roste délka primárních letek na úkor délky ruky. U protiptáků bylo také poprvé dosaženo moderních poměrů mezi kostmi ruky – Archaeopteryx, Jeholornis a Confuciusornis se v morfoprostotu nepřekrývají s žádnou z moderních ptačích skupin a Chan s kolektivem uvádějí, že zvláštní proporce kostí jejich křídel mohly přispět k jejich neschopnosti aktivně létat, kterou už prokázaly předchozí studie ramenního pletence (Senter 2006) i letek (Nudds & Dyke 2010; Wang et al. 2011). Enantiorniti naproti tomu vykazují velký překryv se všemi funkčními skupinami žijících ptáků.
    Přezkoumání výsledků po aplikaci nezávislých kontrastů ukazuje, že korekce dat o fylogenezi výsledky nijak výrazně neovlivní. Zdá se, tedy, že fylogenetická blízkost nemá na variaci v relativních délkách křídelních kostí žádný velký vliv. Variace daná příbuzenskými vztahy se začne projevovat výrazněji, když z dat zcela odstraníme vliv rozdílných absolutních rozměrů. Nejdůležitější je ale zjištění, že odlišné způsoby letu u žijících ptáků nelze z poměrů mezi křídelními elementy rozeznat: znamená to, že pokud budeme chtít vědět něco víc o letových schopnostech vymřelých ptáků, budeme muset najít lepší indikátor. Do té doby podle Chana a spol. zůstanou letové styly enantiornitů nejisté, ačkoli zmiňují potenciál studií ramenního pletence. Nadějná je také studie Simonse (2010), který u vodních ptáků dokázal odlišit různé způsoby letu z relativních délek křídelních kostí v kombinaci s jejich průměry. Ukázal také, že tvar příčného průřezu záprstí (karpometakarpu) souvisí s úhlem, pod kterým se k němu připojují primární letky, a ten je zase určen rozdílným mechanickým namáháním vyplývajícím z různých stylů letu. Není však jisté, zda tyto vztahy platí pro všechny neornity. Chan a spol. také vyjadřují naději, že by se jim možná podařilo lépe separovat různé druhy letu, kdyby měli od žijících ptáků podrobnější údaje (frekvence mávání křídel, úhel zdvihu atd.) a nemuseli si letové kategorie definovat apriorně.
    Na závěr studie si autoři trochu zaspekulovali o příčinách známé absence druhohorních neornitů, která odporuje výsledkům prakticky všech studií užívajících molekulární hodiny (Paton et al. 2002; Brown et al. 2007, 2008; Brown & van Tuinen 2011; Haddrath & Baker 2012). Zde je určitý důvod k obavám, neboť jeden ze spoluautorů práce (G. J. Dyke) není hypotéze velké svrchnokřídové radiace neornitů příliš nakloněn (viz např. Dyke & Gardiner 2011). Autoři zde ovšem pouze navrhují, že porovnáváním morfologie křídel (a tím i způsobu letu, který je samozřejmě pro ptačí ekologii velmi důležitým faktorem) by šlo testovat hypotézu, podle níž byla vzácnost neornitů ve svrchní křídě způsobena zaplněním dostupných ekologických nik dříve vzniklými non-neornitími ornitury (Dyke et al. 2007). Pro její otestování jsem rozhodně všemi deseti, příliš jí ale nevěřím: datované molekulární fylogeneze ukazují, že na konci křídy už existovala naprostá většina dnešních ptačích skupin, včetně nokturnálních strizorů, dravých sokolů nebo "srostloprstých" (Brown & van Tuinen 2011; Jetz et al. 2012) a je těžké si představit, jak by se taková diverzita smrskla do několika málo nik neobsazených bazálnějšími ornitury. Za pravděpodobnější považuji biogeografický argument, podle nějž prostě větší část rané evoluce moderních ptáků proběhla na jižní polokouli, dosud paleontologicky nedostatečně prozkoumané (Cracraft 2001).

Morfoprostor okupovaný druhohorními a moderními ptáky. (A) srovnává PC1 a PC2, přičemž PC1 je osa absolutních rozměrů: taxony s delšími předními končetinami se umísťuji v záporné části osy. (B) srovnává PC2 a PC3, přičemž obě veličiny jsou nyní nezávislé na délce předních končetin. Červené křížky – neptačí teropodi; růžové čtverce – Archaeopteryx a Jeholornis; modré čtverce – Confuciusornis; zelené křížky – enantiorniti; světle modré trojúhelníky – Hongshanornis a Jianchangornis; modré hvězdičky – potáplice; tmavočervené obdélníky – žijící ptáci s rychlým mávavým letem; černá kolečka – žijící ptáci s obratným manévrovaním při mávavém letu; fialové kroužky – žijící ptáci s pomalým mávavým letem a rychlým vzletem; světle zelené kosočtverce – plachtící žijící ptáci. (Zdroj: Chan et al. 2012: Figure 2)

    Zcela na druhý konec dinosaurů nás zavádí studie Egertona a spol., hlásící první gondwanské pozůstatky čerstvě vylíhlého mláděte ornitopodního dinosaura Talenkauen santacrucensis. Maličké zubní korunky, měřící pouze 1 mm na výšku a 1,7 mm na příčnou (meziodistální) šířku, jsou souměrné a uprostřed vnitřní (linguálním, čili k jazyku orientovaném) strany disponují hřebínkem. Morfologie odpovídá zubům ze spodní čelisti u kladu Euiguanodontia (definovaným jako poslední společný předek gasparinisaury a dryomorfů a všichni potomci tohoto předka), do něhož Talenkauen (spolus makrogryfosaurem v rámci kladu Elasmaria) jako bazální zástupce také spadá (Calvo et al. 2007). Velikost sama o sobě není dobrým ukazatelem toho, že zuby patřily velmi mladému jedinci: stejně tak dobře by se mohlo jednat i o náhradní zub (rostoucí v čelisti pod zubem, který má po obroušení vystřídat) v rané fázi růstu. Strmě nakloněné obroušené plošky a některé další rysy ale podporují spíše hypotézu o nedávno vylíhlém mláděti, která je také konzistentní s malými úlomky kostí nalezenými poblíž zubů. Z Gondwany je to první nález takto mladého jedince ornitopoda.
    Ozubení kachnozobých dinosaurů se týká také druhá z nedávných prací, tentokrát od týmu autorů pod vedením G. M. Ericksona, známým třeba studiemi dinosauřího metabolizmu (Erickson et al. 2009) a růstu (Erickson et al. 2001). Nyní si všímají toho, jakými tkáněmi jsou tvořeny zuby nejodvozenějších ornitopodů, zástupců kladu Hadrosauridae. Zatímco většina diapsidů ma zuby složené pouze ze dvou tkání – tvrdé hypermineralizované skloviny a měkčí, kostem podobné "normální" zuboviny (ortodentinu) –, savci vyvinuli dva další typy zubní tkáně: druhotnou zubovinu a korunkový cement, a to několikrát nezávisle na sobě; u linií specializujících se na žvýkání tuhé potravy (sloni, koně, bizoni). Tyto tkáně jsou každá jinak tvrdá a každá se tedy obrušuje různou rychlostí, čímž vytvářejí na zubu drsný povrch umožňující drtit tuhou rostlinnou hmotu. Vzhledem k tomu, že podobně členité povrchy, jaké mají zuby savčích býložravců, vykazují i zuby hadrosauridů, bylo zřejmé, že konzervativní dvoutkáňový model zde zřejmě nebude stačit. A skutečně: rytí sondou s diamantovým hrotem do dobře zachovalého edmontosauřího zubu, které mělo napodobit  kontakt s abrazivní potravou, a vyhodnocení rychlosti obroušení ukázalo nejen dva další typy tkání známé od savců (sekundární zubovina, korunkový cement), ale i velké vyplněné větvě dřeňové dutiny a tlustou "plášťovou" zubovinu, čímž se dostáváme na celkem šest typů tkáně. Náhled do specializované literatury (Peyer 1968; Schmidt & Keil 1971) rychle ukáže, že s takovou stavbou zuby hadrosauridů patří k těm nejsložitějším známým. Na rozdíl od savců se také kombinace tkání výrazně lišila uvnitř jediného zubu. To zřejmě souviselo s uspořádáním hadrosauridích zubů do "baterií", kdy na sebe nasedající a do sebe zapadající zuby formují na vnitřní straně čelisti jediný souvislý povrch pro rozmělňování tuhé potravy. Za života zvířete docházelo k migraci těchto zubů napříč čelistí v rámci alveolu do funkčních pozic (přičemž na "funkční pozici" byly v každé řadě dva až tři zuby – Horner et al. 2004). Odlišná konfigurace tkání v různých částech zubu mu zřejmě při postupu po povrchu zubní baterie dovolovala zaujímat různé funkce.
    Ve fylogenetickém kontextu se ukazuje, že u báze ornitopodů došlo ke vzniku druhotné zuboviny a obřích tubulů (větví dřeňové dutiny). Zbylé dva typy tkání, tedy korunkový cement a plášťová zubovina odolná proti obroušení, se vyvinuly u společného předka Hadrosauridae a jsou tedy pro tuto skupinu primitivní. Právě touto morfologií disponuje Edmontosaurus i většina ostatních prozkoumaných hadrosauridů: zuby zde současně zajišťovaly krájení i rozmělňování a nejvíc se hodily na zpracovávání vláknité, tužší rostlinné hmoty. V horní čelisti měly všechny zuby z baterie sklovinu (vysoce odolnou proti obroušení), zatímco v dolní čelisti už jen některé – sklovina se zcela obrousila, než se zub přesunul napříč žvýkacím povrchem baterie. Odvozené modifikace této morfologie podle všeho souvisí s průnikem do specializovaných nik a najdeme je např. u lambeosaurinů (Lambeosaurus, Corythosaurus) nebo u taxonů Saurolophus a Prosaurolophus. Lambeosaurini se z pleziomorfické kombinace krájení a drcení specializovali na druhou funkci, což bylo doprovázeno ústupem tubulů (znamenajícím vymizením krájecí plošky), zatímco druhá dvojice taxonů si naopak ponechala jen krájení a tubuly jsou v jejich zubech početné a rozmístěné tak, že ve všech stádiích obroušení při migraci zubu baterií se krájecí ploška znovu vytvořila.
    Právě tyto adaptace, které hadrosauridům dodávaly biomechanicky a histologicky nejsložitější zuby mezi sauropsidy, vyrovnávající se i odvozeným býložravým savcům, mohly umožnit jejich křídovou diverzifikaci a vytlačení sauropodů. Rozmělňovací aparát v podobě baterií s šestitkáňovými zuby se ukázal být ve zpracovávání velmi tuhých kapradin, přesliček a nízkých nahosemenných rostlin (které hadrosauridi prokazatelně konzumovali, jak dokazují koprolity i dochovaný obsah střeva – Tweet et al. 2008) natolik účinný, že hadrosauridům umožnil obsadit i specializované niky, do nichž jiní býložraví dinosauři nepronikli. Pěkně to kontrastuje s moderními ptáky, jejichž ohromný evoluční úspěch se nejnovější hypotézy pro změnu snaží vysvětlit – aspoň z části – ztrátou zubů (Louchart & Viriot 2011).

(A) frontální průřez čelistmi, zachycující ze stavby zubů pouze sklovinu (červeně) a zubovinu (v širším smyslu; žlutě). Spodní žvýkací povrch není pokryt sklovinou. Vývojová stadia zubů v horní čelisti udává index u písmena M, v dolní čelisti index u D. Obroušené zuby byly z každého sloupce shazovány po 45 až 80 dnech, takže hadrosaurid mohl za rok ztratit až stěží uvěřitelných 1880 zubů. (B) nevysvětlené útvary na zubech edmontosaura. (C) zub hadrosaura s hřebínky tvarovanými do písmene Y. (D) Průřez zubem edmontosaura, zachycující různé typy tkáně. Jejich přítomnost a uspořádání se lišily napříč různými částmi zubu, takže např. kořen (E) postrádal tubuly, neboli vyplněné výběžky dřeňové dutiny. Šipky ukazují korunkový cement po stranách zubu. (Zdroj: Erickson et al. 2012: Figure 2)

    K neontologii a konkrétně molekuláře se opět vracíme se studií Kirchmana a spol., kteří se zaměřili na fylogenetickou pozici vymřelého papouška karolínského (Conuropsis carolinensis). Ten se vyskytoval v hojných počtech na východě Severní Ameriky až k Erijskému a Ontarijskému jezeru – což z něj činilo zdaleka nejseverněji se vyskytujícího amerického papouška, než v 30. letech 19. století začalo jeho stavy ohrožovat odlesňování. Na konci 19. století už byl vybit do té míry, že z kdysi širokého areálu už se vyskytoval jen na Floridě, a poslední potvrzená pozorování živých papoušků pocházejí z 20. let 20. století. Jak Kirchman s kolektivem konstatují, stal se karolínský papoušek spolu s holubem stěhovavým (Ectopistes migratorius) smutným dokladem toho, jak lidé dovedou vyhubit i hojně se vyskytující a široce rozšířený druh kontinentálního ptáka (Fuller 2001). Vymření papouška navíc předcházelo všem vážným pokusům o studium jeho ekologie a chování, takže všechny naše znalosti v tomto ohledu pocházejí z krátkých zpráv amerických přírodovědců z 19. století. Jako dosud nejcennější hodnotí autoři úsilí Noela F. R. Snydera (Snyder 2004; Snyder & Russell 2002), který tyto informace zkombinoval s rozhovory s několika málo pamětníky, kteří ještě měli s divokými karolínskými papoušky přímou zkušenost. Kirchman a spol. navrhují Snyderovo dílo doplnit opatrnou rekonstrukcí ekologie a chování C. carolinensis z aspektů biologie jeho nejbližších žijících příbuzných – k tomu ovšem musíme vědět, kdo tito příbuzní jsou. Autoři proto izolovali DNA z úštěpků kůže a pojiva z palce šesti exemplářů karolínských papoušků, z nichž dva, jejichž datování by mělo být spolehlivé, byli zastřeleni v dubnu 1884. Na Google+ už proběhla krátká debata o tom, zda se něčemu takovému dá říkat "paleo DNA" (jako třeba u molekulárních studií novozélandských ptáků moa; pro shrnutí viz Allentoft & Rawlence 2011); závěr zní, že ne: dostat genetický materiál z takto starých vzorků je docela triviální.
    Bayesovská i věrohodnostní analýza ukazují, že C. carolinensis je sesterskou skupinou kladu složeného z aratingy sluneční (Aratinga solstitialis), aratingy zlatohlavého (Aratinga auricapillus) a nandeje černohlavého (Nandayus nenday; to české jméno jsem si tentokrát nevymyslel). Tento výsledek obdržel posteriorní pravděpodobnost 0,99 a bootstrap 75%. Na bayesovském stromě je klad složený z těchto čtyř taxonů sesterský ke skupině zahrnující ary (Ara, Primolius, Orthopsittaca, Cyanopsitta), zatímco maximální věrohodnost na téže pozici odkryla další zástupce arating, což tento taxon činí para- nebo poly-fyletickým. Kirchman a spol. sice zmiňují, že bootstrapová podpora pro tento výsledek je jen nízká, ale Aratinga zůstává umělou skupinou tak jako tak: jak ukazuje strom přetištěný níže, zástupci tohoto taxonu formují napříč stromem několik rozeznatelných a dobře podložených kladů, z nich každý obsahuje zástupce nějakého jiného "rodu". Z dalších fylogenetických výsledků stojí za zmínku ještě rozsah kladu Androglossini. Toto jméno zavedli Joseph et al. (2012) pro skupinu krátkoocasých jihoamerických papoušků z kladu Arinae, tvořící sesterský taxon k arům v úzkém slova smyslu (Arini). Joseph a spol. ale odmítli do Androglossini zařadit mnoho taxonů, které přitom ve všech dosavadních fylogenezích (Wright et al. 2008; Schirtzinger et al. 2012) stály blíž nesporným androglossinům (Amazona, Pionus) než nesporným ariniům (Ara, Anodorhynchus), jako např. papouška mnišího (Myiopsitta), amazónka (Hapalopsittaca) nebo tiriku (Brotogeris). Kirchman a spol. tyto tři taxony opět nalézají pospolu s androglossiny, a to s posteriorní pravděpodobností 1 (avšak bez bootstrapové podpory). Další z taxonů, které Joseph et al. (2012) klasifikovali jako "Arinae incertae sedis", papoušíček (Forpus), je velmi slabě podpořen jako nejbazálnější zástupce Arini, zatímco aymary (Bolborhynchus), tepujové (Nannopsittaca) a Touit stojí zcela mimo klad (Arini + Androglossini) na bázi Arinae.

Vlevo: fylogram zobrazující pozici papouška karolínského mezi 43 ostatními zástupci neotropické skupiny Arinae a 4 papoušky z Afriky, Austrálie a Nového Zélandu použitými jako outgroup. Analýza je založena na bayesovské analýze 2 mitochondriálních genů se samostatným modelem evoluce pro každou kodonovou pozici v každém genu. Nad větvemi posteriorní pravděpodobnost, pod nimi bootstrap (~ znamená >50%). Vpravo: ručně kolorovaná rytina papoušků karolínských od Johna Jamese Audubona, pořízená před tím, než byl pták v Severní Americe úplně vyhuben... (Modifikováno z Kirchman et al. 2012: Figure 1 a upload.wikimedia.org)


Averianov AO, Alifanov VR 2012 New data on duck-billed dinosaurs (Ornithischia, Hadrosauridae) from the Upper Cretaceous of Tajikistan. Palaeont J 46(5): 512–9

Duck-billed dinosaur remains (Hadrosauridae) from the Yalovach Formation (Lower Santonian) of the Isfara 2 and Kansai localities (northern Tajikistan) are described. Most of them belong to a flat-headed hadrosaurid which is distinguished from all other representatives of the family by the absence on the frontals of a facet for the nasals. In this feature, the Tajikistan hadrosaurid is similar to Bactrosaurus johnsoni from the Iren Dabasu Formation of China, which shows the minimum contact of the frontals and nasals; and in the wide prefrontal, it resembles Aralosaurus tuberiferus from the Bostobinskaya Formation in Kazakhstan. The theropod Troodon isfarensis Nessov, 1995 from Isfara 2 is described based on a hadrosaurid prefrontal.

Baker AJ, Yatsenko Y, Tavares ES 2012 Eight independent nuclear genes support monophyly of the plovers: The role of mutational variance in gene trees. Mol Phylogenet Evol 65(2): 631–41

Molecular phylogenies of Charadriiformes based on mtDNA genes and one to three nuclear loci do not support the traditional placement of Pluvialis in the plovers (Charadriidae), assigning it instead to oystercatchers, stilts, and avocets (Haematopodidae and Recurvirostridae). To investigate this hypothesis of plover paraphyly, the relationships among Pluvialis and closely related families were revisited by sequencing two individuals of all taxa except Peltohyas for eight independent single copy nuclear protein-coding loci selected for their informativeness at this phylogenetic depth. The species tree estimated jointly with the gene trees in the coalescent programme *BEAST strongly supported plover monophyly, as did Bayesian analysis of the concatenated matrix. The data sets that supported plover paraphyly in Baker et al. (2007) and Fain and Houde (2007) reflect two to four independent gene histories, and thus discordance with the plover monophyly species tree might have arisen by chance through stochastic mutational variance. For the plovers we conclude there is no conclusive evidence of coalescent variance from ancient incomplete lineage sorting across the interior branch leading to Pluvialis in the species tree. Rather, earlier studies seem have been misled by faster evolving mtDNA genes with high mutational variance, and a few nuclear genes that had low resolving power at the Pluvialis sister group level. These findings are of general relevance in avian phylogenetics, as they show that careful attention needs to be paid to the number and the phylogenetic informativeness of genes required to obtain accurate estimates of the species tree, especially where there is mutational heterogeneity in gene trees.

Bittencourt JS, da Rosa ÁAS, Schultz CL, Langer MC 2012 Dinosaur remains from the ‘Botucaraí Hill’ (Caturrita Formation), Late Triassic of south Brazil, and their stratigraphic context. Hist Biol doi:10.1080/08912963.2012.694881

Vertebrate fossils recovered from sites nearby the Botucaraí Hill and Candelária (Caturrita Formation) depict a diverse Late Triassic tetrapod fauna from south Brazil. These records are of key importance to the biostratigraphy of the upper sections of the Rosario do Sul Group. A lithological and biostratigraphic survey on the main fossil localities of the Botucaraí Hill area confirms the occurrence of the lower Hyperodapedon and the upper Riograndia Assemblage Zones in the region, the latter yielding early saurischians. In this paper, three incomplete dinosaur specimens, an isolated sacral vertebra, an articulated left pubis–ischium and an isolated right ischium, from the ‘Botucaraí Hill’ site are described. A comparative survey suggests that these specimens have sauropodomorph affinities, but probably more primitive than typical ‘prosauropods’ from the Norian-Early Jurassic. Regardless of the phylogenetic position of Guaibasaurus as theropod or sauropodomorph, their occurrence in the Caturrita Formation, which also yielded ‘core prosauropods’ from the Santa Maria region, suggests either the survival of early members of the clade with more derived ‘prosauropods’ or that heterochronous faunas are sampled from that stratigraphic unit.


Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights.
Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal(stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa.
The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a wide range of paleobiological studies (including growth rates, metabolism, and energetics) and meta-analyses of body size evolution.

Candeiro CRA, Agnolin FL, Martinelli AG, Buckup PA 2012 First bird remains from the Upper Cretaceous of the Peirópolis site, Minas Gerais state, Brazil. Geodiversitas 34(3): 617–24

We report on the first occurrence of Maastrichtian bird material from the Peirópolis locality (Uberaba district), Minas Gerais State (Brazil). The specimens consist of an indeterminate pedal ungual phalanx (CPP 481), a pedal phalanx 1 of left digit II (CPP 470) and an incomplete metatarsal III (CPP 482). The material can be assigned to Aves gen. et sp. indet. (CPP 470 and CPP 481) and to cf. Enantiornithes gen. et sp. indet. (CPP 482). Despite the isolated and incompleteness nature [sic] of these specimens, they add to the otherwise poor record of Cretaceous birds from Brazil.

Chan NR, Dyke GJ, Benton MJ 2012 Primary feather lengths may not be important for inferring the flight styles of Mesozoic birds. Lethaia doi:10.1111/j.1502-3931.2012.00325.x

Although many Mesozoic fossil birds have been found with primary feathers preserved, these structures have rarely been included in morphometric analyses. This is surprising because the flight feathers of modern birds can contribute approximately 50% of the total wing length, and so it would be assumed that their inclusion or exclusion would modify functional interpretations. Here we show, contrary to earlier work, that this may not be the case. Using forelimb measurements and primary feather lengths from Mesozoic birds, we constructed morphospaces for different clades, which we then compared with morphospaces constructed for extant taxa classified according to flight mode. Consistent with older work, our results indicate that among extant birds some functional flight groups can be distinguished on the basis of their body sizes and that variation in the relative proportions of the wing elements is conservative. Mesozoic birds, on the other hand, show variable proportions of wing bones, with primary feather length contribution to the wing reduced in the earlier diverging groups. We show that the diverse Mesozoic avian clade Enantiornithes overlaps substantially with extant taxa in both size and limb element proportions, confirming previous morphometric results based on skeletal elements alone. However, these measurements cannot be used to distinguish flight modes in extant birds, and so cannot be used to infer flight mode in fossil forms. Our analyses suggest that more data from fossil birds, combined with accurate functional determination of the flight styles of living forms is required if we are to be able to predict the flight modes of extinct birds.

Contessi M, Fanti F 2012 First record of bird tracks in the Late Cretaceous (Cenomanian) of Tunisia. Palaios 27(7): 455–64

The discovery of fossil bird tracks from the Cenomanian Kerker Member (Zebbag Formation) in southern Tunisia represents the oldest report of fossil birds from the Cretaceous of continental Africa. Three small bird tracks were discovered in a track-bearing surface dominated by tridactyl dinosaur footprints and are attributed to the ichnogenus Koreanaornis. This represents the first occurrence of this ichnogenus in Africa and indicates a worldwide distribution of these shorebirdlike tracks, previously known only from Asia and North America. Tracks described in this study are also smaller than any other fossil bird track known to date, thus they can be included in the minute size class following modern bird track groups. A comparison with present-day shorebird tracks indicates strong similarities in size, morphology, and environment with extant members of the Actitis genus, commonly known as sandpipers, which inhabit arid central African tidal flats. The occurrence of bird tracks in the early Late Cretaceous of Tunisia also brings important new insight into the paleoecology of an area previously thought to be a site of exclusively marine deposition.

d’Horta FM, Cuervo AM, Ribas CC, Brumfield RT, Miyaki CY 2012 Phylogeny and comparative phylogeography of Sclerurus (Aves: Furnariidae) reveal constant and cryptic diversification in an old radiation of rain forest understorey specialists. J Biogeogr doi:10.1111/j.1365-2699.2012.02760.x

    Aim: To evaluate the role of historical processes in the evolution of Sclerurus leaftossers by integrating phylogenetic and phylogeographical approaches.
    Location: Humid forests of the Neotropical region.
    Methods: We reconstructed the evolutionary history of Sclerurus based on DNA sequences representing all species and 20 of the 26 recognized subspecies using one autosomal nuclear locus and three protein-coding mitochondrial gene sequences. Phylogenetic relationships were inferred using Bayesian and maximum-likelihood methods. We used Bayesian coalescent-based approaches to evaluate demographic changes through time, and to estimate the timing of diversification events. Based on these results, we examined the temporal accumulation of divergence events using lineage-through-time plots.
    Results: The monophyly of all Sclerurus species was strongly supported except for Sclerurus mexicanus, which was paraphyletic in relation to Sclerurus rufigularis, and for the sister pair Sclerurus scansorSclerurus albigularis, which were not reciprocally monophyletic in the nuclear tree. We found remarkably deep phylogeographical structure within all Sclerurus species, and overall this structure was congruent with currently recognized subspecies and Neotropical areas of endemism. Diversification within Sclerurus has occurred at a relatively constant rate since the Middle Miocene.
    Main conclusions: Our results strongly support the relevance of physiographical (e.g. Nicaragua Depression, Isthmus of Panama, Andean Cordillera, great rivers of Amazonia) and ecological barriers (open vegetation corridor) and ecological gradients (elevational zonation) to the diversification of Neotropical forest-dwelling organisms. Despite the high congruence among the spatial patterns identified, the variance in divergence times suggests multiple speciation events occurring independently across the same barrier, and a role for dispersal. The phylogenetic patterns and cryptic diversity uncovered in this study demonstrate that the current taxonomy of Sclerurus underestimates the number of species.

Egerton VM, Novas FE, Dodson P, Lacovara K 2012 The first record of a neonatal ornithopod dinosaur from Gondwana. Gondwana Res doi:10.1016/j.gr.2012.08.010

Discrete post-embryonic teeth and bone fragments have been recovered from the matrix with the holotype skeleton (MPM–10001) of the ornithopod dinosaur, Talenkauen santacrucensis Novas et al., 2004 (Upper Cretaceous, Argentina). The minute tooth crowns are 1 mm apicobasally tall and 1.7 mm mesodistally wide. The crowns are symmetrical and have a centrally located primary ridge on the lingual surface. Secondary ridges lead to five marginal denticles on both teeth. The tooth morphology is consistent with dentary teeth in euiguanodontids. There is no evidence of transport, suggesting that the material is autochthonous with respect to the adult body block of T. santacrucensis (MPM–10001). Steeply inclined wear facets on the lingual surface and associated microstriae support the conclusion that the minute teeth were from a post-embryonic euiguanodontid dinosaur rather than early stage replacement teeth. The morphology, size, and wear of the teeth and small bone fragments found in the body block of MPM–10001 suggest that this material belongs to a neonatal Talenkauen santacrucensis. This is the first record of neonatal ornithopod remains from Gondwana.

Erickson GM, Krick BA, Hamilton M, Bourne GR, Norell MA, Lilleodden E, Sawyer WG 2012 Complex dental structure and wear biomechanics in hadrosaurid dinosaurs. Science 338(6103): 98–101

Mammalian grinding dentitions are composed of four major tissues that wear differentially, creating coarse surfaces for pulverizing tough plants and liberating nutrients. Although such dentition evolved repeatedly in mammals (such as horses, bison, and elephants), a similar innovation occurred much earlier (~85 million years ago) within the duck-billed dinosaur group Hadrosauridae, fueling their 35-million-year occupation of Laurasian megaherbivorous niches. How this complexity was achieved is unknown, as reptilian teeth are generally two-tissue structures presumably lacking biomechanical attributes for grinding. Here we show that hadrosaurids broke from the primitive reptilian archetype and evolved a six-tissue dental composition that is among the most sophisticated known. Three-dimensional wear models incorporating fossilized wear properties reveal how these tissues interacted for grinding and ecological specialization.

Gao C-L, Chiappe LM, Zhang F-J, Pomeroy DL, Shen C-Z, Chinsamy A, Walsh MO 2012 A subadult specimen of the Early Cretaceous bird Sapeornis chaoyangensis and a taxonomic reassessment of sapeornithids. J Vert Paleont 32(5): 1103–12

We describe the anatomy and bone microstructure of a new subadult specimen of Sapeornis chaoyangensis from the Early Cretaceous of Liaoning Province, China. To date, this is the only known sapeornithid that preserves substantial portions of its plumage. Found in the Yixian Formation, it also represents the oldest known sapeornithid, and as such, extends the stratigraphic range of this lineage 3–5 million years. This specimen also increases our knowledge of sapeornithid skeletal and integumentary anatomy, including previously unrecognized details of the primary and secondary wing feathers. Examination of the characters used to diagnose other named sapeornithid species reveals that such diagnoses have incorporated morphologies that are influenced by either taphonomy or ontogeny. Based on qualitative and quantitative comparisons between the new specimen and other sapeornithid species, we argue that all other named sapeornithids are junior synonyms of S. chaoyangensis.

Gao C-L, Morschhauser EM, Varricchio DJ, Liu J-Y, Zhao B 2012 A second soundly sleeping dragon: New anatomical details of the Chinese troodontid Mei long with implications for phylogeny and taphonomy. PLoS ONE 7(9): e45203

A second nearly complete, articulated specimen of the basal troodontid Mei long (DNHM D2154) is reported from the Early Cretaceous (Hauterivian-Valanginian) lower Yixian Formation, Liaoning Province, China. New diagnostic features of Mei long are identified, including: a uniquely shaped maxilla, low with small, low maxillary fenestra; sacrum with an extremely wide caudal portion and elongate 4th and 5th sacral processes; and a large distal articular surface on the tibiotarsus which continues caudally on the tibia. A phylogenetic analysis including new data from the second specimen recovered Mei as a basal troodontid, in keeping with previous analyses. Although the skeleton exhibits several juvenile-like features including free cervical ribs, unfused frontals and nasals, and a short snouted skull, other attributes, full fusion of all neurocentral synostoses and the sacrum, and dense exteriors to cortical bone, suggest a small, mature individual. Microscopic examination of tibia and fibula histology confirms maturity and suggests an individual greater than two years old with slowed growth. Despite being one of the smallest dinosaurs, Mei long exhibits multi-year growth and cortical bone consisting largely of fibro-lamellar tissue marked by lines of arrested growth as in much larger and more basal theropods. This Mei long specimen lies in a similar but mirrored sleeping position to that of the holotype, strengthening the hypothesis that both specimens were preserved in a stereotypical life position. Like many Liaoning specimens, the new specimen also lacks extensive taphonomic and stratigraphic data, making further behavioral inference problematic.

Hone DWE 2012 Variation in the tail length of non-avian dinosaurs. J Vert Paleont 32(5): 1082–9

Estimating the mass of an extinct organism is naturally difficult. Practicality and simplicity means that often some linear measurement is used as a proxy. In the case of non-avian dinosaurs, the total length of the animal (from the snout to the tip of the tail) is sometimes used for this purpose. However, the total length of the tail is unknown in all but very few dinosaurian taxa. Tail length data taken from specimens and the literature are shown here to have remarkable variation both between and within clades (and even within single species). Comparison with body length data shows that total length (including the tail) is therefore a less reliable measure of size than using the snout-vent length of the animal. ‘Snout-sacrum’ lengths are suggested as a more reliable alternative. Total length should not be abandoned, however, both to provide a comparison with older works and specimens lacking complete presacral axial columns, and for communication with the general public.


We obtained the first DNA sequences from the extinct Carolina Parakeet (Conuropsis carolinensis) and used these data to infer the phylogenetic relationships of this iconic North American parrot. We compared our sequences of the mitochondrial COI and ND2 genes obtained from multiple Carolina Parakeet museum specimens to homologous sequences from individuals representing 43 species in 28 genera of Neotropical parrots (Tribe Arini), and four species from more distantly related Old World species of the Order Psittaciformes. Bayesian and maximum likelihood analyses place C. carolinensis on a long branch within a well-supported clade of parakeets that also includes Aratinga solstitialis, A. auricapillus, and Nandayus nenday. These species of Aratinga (but not N. nenday) closely resemble C. carolinensis in the presence of yellow and orange head plumage and blue feathers in the wings. Our data do not support a close relationship with the Monk Parakeet (Myiopsitta monachus), with which the Carolina Parakeet shares fully feathered ceres, a putative adaptation for cold tolerance that appears to have evolved independently in both species. Given the high level of sequence divergence from all sampled species, we recommend continued recognition of the monotypic genus Conuropsis. Taxonomic revision of the highly polyphyletic genus Aratinga is needed.

Klein N, Christian A, Sander PM 2012 Histology shows that elongated neck ribs in sauropod dinosaurs are ossified tendons. Biol Lett doi:10.1098/rsbl.2012.0778

The histology of cervical ribs of Sauropoda reveals a primary bone tissue, which largely consists of longitudinally oriented mineralized collagen fibres, essentially the same tissue as found in ossified tendons. The absence of regular periosteal bone and the dominance of longitudinal fibres contradict the ventral bracing hypothesis (VBH) postulated for sauropod necks. The VBH predicts histologically primary periosteal bone with fibres oriented perpendicular to the rib long axis, indicative of connective tissue between overlapping hyperelongated cervical ribs. The transformation of the cervical ribs into ossified tendons makes the neck more flexible and implies that tension forces acted mainly along the length of the neck. This is contrary to the VBH, which requires compressive forces along the neck. Tension forces would allow important neck muscles to shift back to the trunk region, making the neck much lighter.